BAB I PENDAHULUAN

1.1 Latar Belakang

Jamu, sebagai warisan budaya yang telah diwariskan secara turun-temurun, mengalami perkembangan seiring dengan kemajuan ilmu pengetahuan dan teknologi serta proses globalisasi. Peningkatan penggunaan jamu sebagai obat tradisional dipengaruhi oleh beberapa faktor. Pertama, adanya harapan hidup yang lebih panjang menyertai meningkatnya prevalensi penyakit kronis. Kedua, kegagalan penggunaan dan efek samping yang mungkin timbul dari obat-obat kimia juga turut mendorong penggunaan jamu. Terakhir, semakin luasnya akses informasi mengenai obat tradisional di seluruh dunia turut berkontribusi pada popularitas jamu sebagai alternatif pengobatan(Prabawa & Fitriani, 2020).

Senyawa kimia yang ditemukan dalam rimpang temulawak, seperti pati, kurkuminoid, dan minyak atsiri, memiliki potensi aplikasi yang signifikan di berbagai sektor industri, termasuk makanan, minuman, dan farmasi. Contohnya, kurkuminoid bukan hanya memberikan warna kuning, tetapi juga digunakan sebagai zat pewarna dalam produksi pangan dan kosmetik. Seiring meningkatnya penggunaan temulawak dalam bidang obat, bahan pangan, dan sebagai bahan baku industri, penting untuk memastikan kualitasnya dengan melakukan pengawasan ketat terhadap kandungan senyawa aktif di dalamnya (Kusriani et al., 2014). Rimpang temulawak mengandung curcumin minimal 2,30%(Kementrian Kesehatan RI, 2017).

Kurkumin termasuk dalam kategori senyawa fitofarmaka dengan berbagai efek biologis yang memberikan manfaat alami, terutama sebagai agen antiinflamasi (anti-radang) dan antihepatotoksik. Khasiat ini sangat bermanfaat untuk melindungi kesehatan hati, khususnya dalam meredakan kondisi radang hati (Atmaka et al., 2013). termasuk sebagai antidislipidemia (penurun kadar lemak), antioksidan (melawan radikal bebas), antiviral (melawan virus), antifungal (menghambat pertumbuhan jamur), dan antibakteri (menghambat pertumbuhan bakteri) (Vikri et al., 2022). Jenis senyawa kurkuminoid yang ditemukan dalam rimpang temulawak

mencakup kurkumin (CUR), demetoksikurkumin (DMC), dan bisdemetoksikurkumin (BDMC) (Saputri et al., 2022).

Kromatografi Lapis Tipis (KLT) merupakan suatu teknik kromatografi planar yang fase diamnya berupa lapisan seragam yang ditempatkan pada permukaan bidang datar dan didukung oleh lempeng kaca, plat aluminium, atau plat plastik. Fungsinya adalah untuk memisahkan senyawa-senyawa dalam campuran menjadi senyawa murni dan menentukan jumlahnya. Sebagai metode analisis yang cepat, KLT memerlukan jumlah bahan minimal baik sebagai penyerap maupun sampelnya. KLT efektif dalam pemisahan senyawa hidrofobik seperti lipida dan hidrokarbon, yang sulit diatasi oleh kromatografi kertas. Selain itu, KLT dapat digunakan untuk mencari eluen dalam kromatografi kolom, menganalisis fraksi hasil kromatografi kolom, mengidentifikasi senyawa melalui kromatografi, serta mengisolasi senyawa murni dalam skala kecil (Nurdiani, 2018).

Metode densitometri unggul karena memiliki spesifikasi tinggi, hasil yang dapat diandalkan, serta kemudahan dan kecepatan dalam pelaksanaannya. Pemilihan fase gerak memberikan fleksibilitas yang besar, dengan optimasi yang dapat dicapai melalui berbagai teknik. Biaya operasionalnya relatif rendah, terutama karena penggunaan pelarut yang minimal dan kemampuan untuk mendaur ulang silika gel pada fase diam. Selain itu, modifikasi polaritas pelarut dengan pelarut campuran dapat dilakukan dengan efisiensi. Penggunaan metode KLT-Densitometri memberikan ketelitian, linieritas, dan kriteria yang memenuhi standar. Selain itu, nilai *Limit of Detection* (LOD) dan *Limit of Quantitation* (LOQ) dapat ditentukan dengan jelas (Savitri & Megantara, 2019).

Menyadari manfaat tinggi dari tanaman yang termasuk dalam famili Zingiberaceae, dilakukan analisis kadar kurkumin untuk memastikan efek farmakologis yang bermanfaat dengan cara kromatografi lapis tipis (TLC). Kandungan kurkumin yang signifikan dapat diidentifikasi melalui penerapan metode Kromatografi Lapis Tipis Densitometri (KLT-densitometri). Metode ini didasarkan pada interaksi radiasi elektromagnetik dengan analit yang terkandung dalam bercak pada KLT. Penggunaan densitometri dalam analisis kuantitatif dengan kadar rendah dapat dilakukan setelah dilakukan verifikasi awal dengan

menggunakan KLT. Penetapan kadar menggunakan KLT Densitometri relatif singkat dan memungkinkan untuk melakukan analisis kadar beberapa sampel secara bersamaa(Yustinianus et al., 2019).

Penelitian tentang analisis kadar kurkumin pada jamu temulawak dengan menggunakan metode KLT-densitometri diharapkan dapat memberikan kontribusi positif dalam menentukan kandungan kurkumin dengan tingkat ketepatan yang lebih tinggi. Hasil penelitian ini diharapkan juga dapat memberikan dasar ilmiah yang kokoh bagi industri jamu tradisional dalam melakukan pengendalian kualitas produk mereka. Selain itu, penelitian ini memiliki potensi untuk menjadi sumbangan yang signifikan dalam pengembangan metode analisis yang efektif untuk senyawa tersebut.

Dengan merujuk pada konteks tersebut, penelitian ini bertujuan untuk menguji kadar kurkumin dalam beberapa sampel jamu Temulawak melalui metode analisis KLT- Densitometri. Tujuan utama adalah mendapatkan kadar kurkumin dengan parameter optimum, termasuk nilai Rf yang sesuai dengan standar kurkumin, serta nilai kadar kurkumin yang terdapat dalam jamu Temulawak (Permatasari et al., 2021).

1.2 Rumusan Masalah

- 1. Bagaimana sistem KLT dapat digunakan untuk mengidentifikasi kandungan kurkumin dalam sampel temulawak?
- 2. Berapakah kandungan kurkumin pada sediaan jamu serbuk temulawak dengan menggunakan metode klt-densitometri?

1.3 Tujuan Penelitian

- 1. Untuk mengetahui bagaimana sistem KLT digunakan dalam mengidentifikasi kandung kurkumin dengan sampel jamu temulawak.
- 2. Untuk mengetahui kadar senyawa kurkumin yang terdapat pada sediaan jamu temulawak dengan metode klt- Densitometri