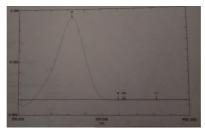
BAB VI Hasil dan Pembahasan

VI.1 Hasil Fraksinasi


Hasil fraksinasi sampe 1 diperoleh sebanyak 4,2 ml dan sampe 2 sebanyak 4,5 ml.

Tabel VI.1 Hasil Fraksinasi Minyak Kelapa Sawit Merah

Sampel 1	Sampel 2
4,2 ml	4,5 ml

VI. 2 Penentuan Panjang Gelombang Standar Asam Galat

Panjang gelombang serapan maksimum λ yang diperoleh yaitu 765 nm, sehingga pengukuran absorban dilakukan pada panjang gelombang tersebut.

Gambar VI. 1 Panjang Gelombang Standar Asam Galat λ 765 nm.

VI.3 Kurva Kalibrasi Standar Asam Galat

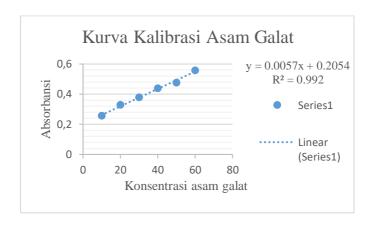

Hasil kurva kalibrasi dari seri pengenceran yang diperoleh sebagai berikut:

Table VI.2 Kurva Kalibrasi Asam Galat

Konsentrasi Asam	Absorbansi
Galat (bpj)	
0	0
10	0,256
20	0,329
30	0,379
40	0,439
50	0,476
60	0,557

Hasil pengukuran absorbansi larutan standar asam galat dibuat kurva kalibrasi dan diperoleh persamaan garis y = 0.0057x + 0.2054 dan harga koefisien korelasi (r) yaitu 0,992.

Reaksi yang terjadi setelah penambahan pereaksi Folin-Ciocalteu adalah reaksi redoks. Fenol mereduksi Fosfomolibdat dan Fosfotungstat dari Folin-Ciocalteu membentuk molybdenum berwarna biru. Semakin pekat warna biru yang terbentuk, semakin besar konsentrasi fenol pada sampel tersebut.

Gambar VI.2. Kurva kalibrasi asam galat dengan spektrofotometer $\mbox{Vis }\lambda 765 \ \mbox{nm}.$

VI. 4 Nilai Batas Deteksi dan Batas Kuantifikasi Asam GalatTabel VI. 3 Nilai Batas Deteksi dan Batas Kuantifikasi Asam Galat

Asam Galat			
Konsentrasi			
(bpj)	y	yi	$(y-yi)^2$
10	0,256	0,2624	4,096
20	0,329	0,3194	9,216
30	0,379	0,3764	6,760
40	0,439	0,4334	3,136
50	0,476	0,4904	2,074
60	0,557	0,5474	9,216
Total			0,000471
$s(y/x)^2$			9,415
SD			0,009

BD	5,107
BK	17,023

VI.5 Penentuan Kadar Fenolat

Tabel VI.4 Hasil pengamatan Senyawa Fenolat total

Sampel	C (bpj)	abs	Rata- rata abs	Kadar Fenolat mg GAE/mg ekstrak	rata- rata kadar fenolat
Sampel 1	200	0,427 0,437 0,425	0,430	0,131 0,137 0,129	0,132
sampel 2	200	0,499 0,494 0,483	0,205	0,185 0,182 0,175	0,181

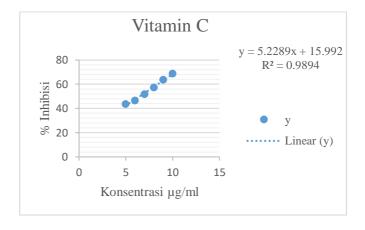
Kadar Fenolat =
$$\frac{\text{sampel (\mu g/mL)} \times \text{Vol pelarut (ml)} / 1000}{\text{Berat ekstrak (g)}}$$

Nilai fenolat total dinyatakan dalam Gallic Equivalens (GAE). Hasil pengukuran absorbansi pembanding asam galat dengan konsentrasinya, sehingga diperoleh kurva linear seperti pada gambar 1. Dari hasil penelitian, kadar fenolat pada minyak kelapa sawit merah pada sampel 1 adalah 0,132 mg GAE/mg ekstrak sedangkan pada sampel 2 adalah 0,181 mg GAE/mg ekstrak.

VI. 6 Pengujian Aktivitas Antioksidan

Optimasi panjang gelombang serapan maksimum DPPH dilakukan pada rentang 400-800 nm. Panjang gelombang serapan maksimum DPPH λ yang diperoleh adalah 517 nm, sehingga pengukuran absorban dilakukan pada panjang gelombang tersebut.

Gambar VI.3 Panjang Gelombang DPPH


Potensi antioksidan dari fraksi kedua sampel menggunakan 1,1-difenil-2-pikrilhidrazil (DPPH) sebagai radikal bebas. Metode ini memanfaatkan pengukuran serapan DPPH yang teroksidasi oleh larutan sampel pada saat inkubasi sehingga diperoleh nilai absorbansi yang lebih rendah dibandingkan absorbansi kontrol (larutan stok DPPH-metanol) dan terjadi penurunan respon absorbansi pada seri konsentrasi.

Perubahan warna yang terjadi adalah perubahan dari larutan yang berwarna ungu menjadi berwarna kuning.

Tabel VI.5 Kurva Kalibrasi Vitamin C

Konsentrasi (µg/mL)	Absorbansi λ 517 nm	
5	0,501	
6	0,477	
7	0,430	
8	0,380	
9	0,323	
10	0,278	

Absorbansi yang diperoleh kemudian diplot terhadap konsentrasi untuk mendapatkan persamaan kurva kalibrasi. Persamaan yang diperoleh yaitu y = 5,2289 + 15,992 dengan kuadrat koefisien korelasi r = 0,989 dengan y menunjukan absorbansi sedangkan x adalah konsentrasi dalam bpj (μ g/mL).

Gambar VI.4 Kurva Kalibrasi % inhibisi terhadap konsentrasi vitamin c.

Tabel VI.6 Hasil Uji Aktivitas Antioksidan sampel 1 dan Sampel 2

	Sampel	1		Sampel	2
C (bpj)	abs	% inhibisi	C (bpj)	abs	% inhibisi
10	0,503	43,419	10	0,502	43,532
20	0,494	44,432	20	0,477	46,344
30	0,463	47,919	30	0,427	52,006
40	0,430	51,631	40	0,379	57,405
50	0,396	55,455	50	0,322	63,779
60	0,373	58,043	60	0,277	68,804

Tabel VI. 7 Data Aktivitas Antioksidan

Sampel	IC ₅₀ (μg/mL)	
Vitamin C	6,50	
Sampel 1	34,53	
Sampel 2	24,90	

Keterangan: $IC_{50} =$ Konsentrasi yang dibutuhkan untuk menurunkan 50% absorbansi DPPH.

 R^2 = Koefisien korelasi persamaan regresi linier.

Besarnya aktivitas antioksidan ditandai dengan nilai IC_{50} yaitu konsentrasi sampel yang mampu menghambat 50% aktivitas radikal bebas DPPH. Berdasarkan nilai diatas, nilai IC_{50} menunjukan bahwa sampel 2 memiliki aktivitas antioksidan yang cukup kuat karena IC_{50} masing-masing sebesar 34,53 (μ g/ml) sedangkan pada sampel 1 sebesar 24,90 (μ g/ml). Bila dibandingkan dengan pembanding antioksidan Vitamin c yang memiliki nilai IC_{50} 6,50 (μ g/mL), maka aktivitas antioksidan vitamin c lebih baik dibandingkan dengan minyak kelapa sawit merah.