Bab II Tinjauan Pustaka

II.1 Tinjauan Botani

Tinjauan botani dari tanaman kupa meliputi klasifikasi, sinonim dan nama lain, morfologi, ekologi dan budidaya dari tanaman *Syzygium polychepalum* (Miq.) Merr. & L.M.Perry).

II.1.1 Klasifikasi

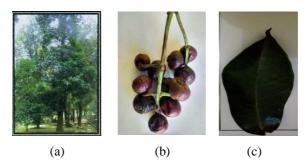
Kerajaan : Plantae

Divisi : Magnoliophyta Kelas : Magnoliopsida

Ordo : Myrtales

Famili : Myrtaceae
Genus : Syzygium

Spesies : Syzygium polycephalum (Miq.) Merr. & L.M.Perry)


(Cronquist, 1981)

II.1.2 Sinonim dan Nama Lain

Kupa memiliki sinonim *Eugenia polycephala, Jambosa cauliflora, Jambosa polycephala*, dan *Syzygium cauliflorum* (Lim, 2012). Di Indonesia, kupa juga dikenal dengan nama gowok, domjong, dan kaliasem. Masyarakat Sunda biasa menyebutnya kupa, kupa benjer, atau kupa manuk, sementara masyarakat Jawa menyebutnya klesem. Sedangkan dalam dunia internasional, kupa dikenal dengan nama lipote sebagaimana sebutan tanaman ini di Philipina (Lim, 2012).

II.1.3 Morfologi Tanaman

Tumbuhan kupa termasuk tumbuhan perennial mempunyai tinggi 8-20 m, diameter batang hingga 50 cm dengan tajuk yang lebat. Duduk daun berhadapan (*opposite*), bertangkai, dengan tangkai daun yang pendek. Daun kupa berukuran besar, lonjong, persegi panjang, berukuran 17-25 cm x 6-7 cm, berbentuk dasar seperti hati, dengan ujung yang lancip (*acuminate*). Daun berwarna hijau tua mengkilap dengan 12-14 saraf lateral pada kedua sisi pertengahan tulang rusuk daun. Daun muda berwarna keunguan, panjang antara daun ranting adalah 5-13 cm (Lim, 2012).

Gambar II.1 Tumbuhan kupa (*Syzygium polycephalum*), makroskopik tanaman (a), buah kupa (b), daun kupa (c). (Sumber a : Bramasto, 2015, b dan c : koleksi pribadi)

Bunga-bunganya kecil, kelopak bunga berbentuk tabung, berwarna putih kehijauan, benang sarinya berwarna putih, dengan panjang filamen 4-6 mm (Lim, 2012). Perbungaan berbentuk malai dengan mahkota bunga berwarna putih, dan jumlah benang sari yang cukup banyak (Hastuti *et al.*, 2000).

Buah kupa berbentuk bulat dengan diameter 2,5-3,5 cm, mempunyai rasa manis asam, dagingnya berwarna putih, luarnya berwarna merah muda dan ungu (Lim, 2012). Bentuk benih menyerupai buah namun dengan ukuran yang lebih kecil. Benih berwarna keputihan, tidak keras (Bramasto *et al.*, 2015).

II.1.4 Ekologi dan Budidaya

Tumbuhan kupa termasuk tumbuhan tropis, dan tumbuh liar di daerah hutan sekunder. Tumbuh di ketinggian 200-1800 mdpl. Tumbuhan kupa ditemukan di Malaysia Barat, Malaysia Tengah, di Indonesia tumbuhan kupa ditemukan di Kalimantan dan Jawa. Di Indonesia tumbuhan kupa dibudidaya terdapat di Purworejo (Lim, 2012).

Tanaman kupa umumnya diperbanyak dengan menggunakan biji (generatif) atau juga melalui metode sambungan (vegetatif), namun hingga saat ini informasi lengkap mengenai budidaya jenis ini masih belum banyak. Biasanya ditanam sebagai tanaman perkarangan. Tanaman ini berbunga pada bulan Agustus dan buah masak antara September – Oktober (Bramasto *et al.*, 2015).

II.2 Kandungan Kimia

Hasil penapisan fitokimia menunjukkan bahwa buah, daun, korteks, dan lignum kupa mengandung flavonoid, senyawa fenolat, dan steroid/triterpenoid. Selain itu, daun dan korteks juga mengandung kuinon dan tanin galat (Wibowo, 2015). Pada daun kupa mengandung senyawa flavonoid, tanin, kuinon, steroid/triterpenoid,

dan saponin (Budiarti, 2017). Ekstrak daun juga mengandung *myricetin*, *quercetin* dan *kaempferol* (Reynertson *et al.*, 2005). Daun kupa yang diekstraksi menggunakan diklorometan diidentifikasi mengandung *ursolic acid*, *oleanolic acid*, *squalence*, dan β -sitosterol (Ragasa *et al.*, 2014).

Sementara itu, kayu kupa memiliki kandungan senyawa flavonoid (3-*O-glucosyl-*3',4'5-*trihydroxyflavonol*), yang aktif terhadap jamur (Jemi *et al.*, 2010).

Gambar II.2 Struktur Senyawa 3-*O-glucosyl-*3',4'5 *trihydroxyflavonol*

Dari fraksi etanol korteks kupa telah berhasil diisolasi dengan menghasilkan isolat berupa senyawa flavonoid (Nazila, 2018). Buah utuh maupun kulit buah kupa mengandung senyawa antosianin (Irnawati *et al.*, 2017).

II.3 Penggunaan Tradisional

Kupa juga dikenal sebagai tanaman buah-buahan karena buahnya sering dikonsumsi dengan cara dijadikan rujak atau manisan dan

dapat juga digunakan untuk membuat agar-agar, serta buah yang matang bisa dimakan segar (Lim, 2012). Daun kupa juga sering dimanfaatkan oleh masyarakat Jawa Barat sebagai lalapan, sedangkan kayu kupa dapat digunakan sebagai bahan konstruksi bangunan (Bramasto *et al.*, 2015). Kulit kayu kupa juga adalah satu dari banyak tanaman yang digunakan oleh orang Sunda di Jawa Barat untuk mengobati disentri (Roosita *et al.*, 2008; Lim, 2012).

II.4 Aktivitas Farmakologi

Tumbuhan kupa memiliki aktivitas antioksidan, inhibisi α -glukosidase, dan antijamur.

II.4.1 Antioksidan

Dari fraksi etanol korteks kupa telah berhasil diisolasi senyawa aktif antioksidan dengan aktivitas sangat kuat yaitu memiliki IC $_{50}$ sebesar 42,65 µg/mL (Nazila, 2018). Pada ekstrak etanol daun kupa di dapatkan nilai IC $_{50}$ sebesar 12,50 µg/mL, sedangkan IC $_{50}$ dari fraksi n-heksana sebesar 64,872 µg/mL, fraksi etil asetat sebesar 8,343 µg/mL, fraksi etanol 20% sebesar 9,663 µg/mL dengan pembanding vitamin C yaitu sebesar 4,73 µg/mL (Darma, 2018).

II.4.2 Inhibisi α-glukosidase

Bagian korteks kupa dilaporkan berpotensi untuk dikembangkan sebagai obat antidiabetes karena memiliki aktivitas penghambatan enzim α -glukosidase kuat dengan nilai IC₅₀ pada fraksi etanol sebesar 2,97 μ g/mL, sementara akarbose memiliki nilai IC₅₀ sebesar 9,68 μ g/mL (Juanda *et al.*, 2018).

II.4.3 Antijamur

Kupa memiliki aktivitas antijamur dengan nilai persentase penghambatan kuat pertumbuhan jamur *Schizophyllum commune* pada fraksi n-heksana yaitu sebesar 60%, sedangkan jamur *Pleurotus* pada fraksi kloroform yaitu sebesar 44% pada selang konsentrasi ekstrak 50 μg/mL (Jemi *et al.*, 2010).

II.5 Hiperurisemia

Asam urat adalah senyawa nitrogen yang dihasilkan dari proses katabolisme purin baik dari diet maupun dari asam urat endogen (asam deoksiribonukleat) DNA. Asam urat sebagian besar diekskresi melalui ginjal dan hanya sebagian kecil melalui saluran cerna (Pagana, 2001).

Hiperurisemia adalah keadaan dimana terjadi peningkatan kadar asam urat di atas normal. Konsentrasi asam urat yang normal adalah 7,0 mg/dL untuk pria dan 6,0 mg/dL untuk wanita. Hiperurisemia yang berkepanjangan dapat menyebabkan gout. Gout adalah penyakit akibat adanya penumpukan kristal monosodium urat pada jaringan akibat peningkatan kadar asam urat (Dipiro *et al.*, 2008).

Prevalensi hiperurisemia yang terjadi di Indonesia dalam *Global Burden of Diseases* (GBD) adalah sebesar 18% (Smith *et al.*, 2015). Hiperurisemia terjadi akibat tingginya konsumsi makanan yang mengandung purin, seperti protein hewani dan konsumsi alkohol, peningkatan produksi asam urat dalam tubuh atau berkurangnya ekskresi asam urat melalui ginjal, serta karena adanya katabolisme

purin menjadi xantin lalu menjadi asam urat oleh aktivitas enzim XO (Dipiro *et al.*, 2008).

Pengobatan asam urat dapat dilakukan dengan cara meningkatkan pengeluaran asam urat atau dengan cara menghambat enzim XO (Wilmana dan Sulistia, 2007). Obat yang umum digunakan untuk meningkatkan ekskresi asam urat adalah Probenesid (Adnyana *et al.*, 2008), sedangkan untuk menurunkan kadar asam urat di dalam darah adalah Allopurinol (Stamp *et al.*, 2016). Allopurinol bekerja dengan cara menghambat aktivitas enzim XO (Dipiro *et al.*, 2015).

II.6 Uji Aktivitas Penghambatan Enzim Xantin Oksidase

Xantin oksidase (XO) adalah enzim yang memiliki peran penting dalam mengkatalis hidroksilasi dari hipoxantin menjadi xantin dan xantin menjadi asam urat. Selain itu, XO juga berperan dalam menghasilkan radikal bebas hidroksil dan hidrogen peroksida (Hille, 1981).

Gambar II.3 Penghambatan XO oleh allopurinol untuk mencegah konversi hipoxantin menjadi xantin dan /asam urat (Sumber: Kostic *et al.*, 2015).

Inhibitor XO adalah suatu zat yang mampu menghambat XO terlibat dalam metabolisme purin. Pada manusia, penghambatan XO dilakukan dengan cara mereduksi produksi asam urat atau mengkonsumsi beberapa obat yang mampu menghambat XO (Pacher *et al.*, 2006).