### BAB II. TINJAUAN PUSTAKA

# 2.1. Kunyit (Curcuma longa L.)

### 2.1.1. Definisi

Kunyit merupakan tanaman obat dan termasuk salah satu jenis rempah-rempah yang digunakan sebagai bumbu masakan oleh sebagian besar masyarakat Indonesia dan India, kunyit termasuk kedalam family zingiberaceae. Kunyit adalah tanaman obat yang berasal dari Asia Tenggara dan telah dikembangkan secara luas di Asia Selatan, China selatan, Taiwan, Philiphina dan tumbuh dengan baik di Indonesia (Kusbiantoro, D. 2018).

## 2.1.2. Taksonomi



Gambar 2. 1 Tanaman Kunyit

(Dokumentasi Pribadi)

Taksonomi tanaman kunyit (Jepriani & Maulana, 2022) sebagai berikut :

Kingdom : Plantae

Divisi : Magnoliophyta

Kelas : Liliopsida

Ordo : Zingiberales

Suku : Zingiberaceae

Marga : Curcuma

Jenis : Curcuma longa L.

## 2.1.3. Nama Daerah

Sumatera: kunyet (Aceh), hunik (Batak); Kalimantan: janar (Banjar), cahang (Dayak Panyabung); Jawa: koneng, temu giring (Sunda), kunir (Jawa), konye, temukoneng (Madura); Nusa Tenggara: kunyik (Sasak); Sulawesi: hamu (Sangir), alawahu (Gorontalo); Maluku: kumino, unin (Ambon); Irian: kandeifu (Nufor), yaw (Arzo) (Kemenkes RI, 2017).

# 2.1.4. Morfologi Tanaman

# a. Batang

Tanaman kunyit memiliki batang semu tersusun dari kelopak atau pelapah daun yang berpalutan atau saling menutupi, berbentuk bulat dan berwarna hijau keunguan.

#### b. Daun

Kunyit memiliki daun yang berbentuk bulat seperti telur memanjang dengan permukaan agak kasar. Pertulangan dari daun kunyit rata dan ujung daun meruncing atau melengkung seperti ekor, dan permukaan daun berwarna hijau muda.

## c. Bunga

kunyit memiliki bunga berbentuk seperti kurucut runcing dan berwarna putih atau kuning muda dengan pangkal berwarna putih. Setiap bunga memiliki tiga lembar kelopak bunga, tiga lembar tajuk bunga dan empat helai benang sari.

# d. Rimpang

Rimpang kunyit berbentuk bulat panjang, pendek, lurus, tebal, dan melengkung serta membentuk cabang rimpang berupa batang yang ada didalam tanah. Kulit rimpang kunyit berwarna jingga kecoklatan atau kekuningan hingga kehitaman. Daging rimpangnya berwarna kuning jingga disertai bau khas yang agak pahit dan pedas (Said, A. 2007).

### 2.1.5. Khasiat Tanaman

Rimpang kunyit berkhasiat sebagai obat demam, obat diare, obat sesak nafas, obat radang hidung dan penurun panas (Depkes RI, 2001).

## 2.1.6. Kandungan senyawa

Rimpang kunyit mengandung saponin, flavonoid, polifenol, dan minyak atsiri (Depkes RI, 2001).

## 2.2. Jahe Merah (Zingiber officinale var. sunti Valeton)

## **2.2.1. Definisi**

Jahe merah merupakan tanaman rimpang yang banyak digunakan sebagai bahan obat dan rempah-rempah. Sebagai bahan obat tradisional, jahe merah dipilih karena memberikan rasa pahit dan pedas dibanding jenis jahe lainnya (Prasetyo et al., 2018).

#### 2.2.2. Taksonomi



Gambar 2. 2 Tanaman Jahe Merah

(Dokumentasi Pribadi)

Taksonomi tanaman kunyit (Hapsoh dan Julianti, 2008) dikelompokan sebagai berikut :

Kingdom : Plantae

Divisi : Magnoliophyta

Kelas : Liliopsida

Ordo : Zingiberales

Suku : Zingiberaceae

Marga : Zingiberis

Jenis : Zingiber officinale var. sunti Valeton

### 2.2.3. Nama Daerah

Sumatera: halia (aceh), sipodeh (Minangkabau), jahi (lampung); Jawa : jae (jawa), jhai (madura); Kalimantan : lai (Dayak); Nusa tenggara : jae (bali), reja (bima); Sulawesi: melito (Gorontalo), pese (bugis); Maluku : sehi (ambon), siwei (buru), geraka (temate), gora (tidore); Papua : lali (kalana fat), manman (kapaur) (Kemenkes RI, 2017).

## 2.2.4. Morfologi

### a. Batang

Batang jahe merah memiliki bentuk bulat kecil, berwarna hijau kemerahan, dan agak keras karena diselubungi oleh pelapah daun. Tinggi tanaman mencapai 34,18 – 62,28 cm).

### b. Daun

Daun jahe merah tersusun berselang-seling secara teratur dan memiliki warna yang lebih hijau, permukaan daun bagian atas berwarna hijau muda dibandingkan dengan bagian bawahnya.

## c. Rimpang

Rimpang jahe merah berwarna merah hingga jingga muda, rimpang pada jahe merah memiliki ukuran lebih kecil dibandingan dengan jahe emprit dan jahe gajah (Lentera, T. 2002).

### 2.2.5. Khasiat Tanaman

Rimpang jahe merah digunakan sebagai obat masuk angin, menghangatkan tubuh, mengobati masuk angin, sakit kepala dan sebagai obat gosok dalam pengobatan encok, keracunan, gangguan pencernaan, sebagai antioksidan, antitusif, mengurangi nyeri, menurunkan panas, antiradang, menurunkan kadar kolesterol, mencegah depresi, impotensi dan lain-lain (Hapsoh et al., 2013;Azkiya et al., 2017).

## 2.2.6. Kandungan Senyawa

Rimpang jahe merah mengandung fenol, flavonoid, dan triterpenoid (Ibreahim et al., 2021).

### 2.3. Ekstraksi

#### 2.3.1. Definisi

Ekstraksi adalah proses penyarian zat-zat aktif dari bagian tanaman obat. Tujuan dari ekstraksi untuk menarik komponen kimia yang terdapat dalam simplisia. Proses ekstraksi didasarkan pada perpindahan massa komponen zat padat kedalam pelarut, dimana perpindahan terjadi pada lapisan antar muka kemudian berdifusi kedalam pelarut (Prakash, A., 2001;Purwandari et al., 2018).

### 2.3.2. Jenis Ekstraksi

### 2.3.2.1. Ekstraksi Cara Dingin

#### a. Maserasi

Maserasi berasal dari Bahasa latin *macerare*, yang artinya "merendam". Maserai adalah proses yang paling tepat dimana obat yang sudah halus memungkinkan untuk direndam dalam menstrum sampai meresap dan melunakkan susunan sel, sehingga zat-zat yang mudah larut akan melarut (Ansel, H. C. 1989). Maserasi merupakan proses ekstraksi simplisia menggunakan pelarut dengan pengadukan atau pengocokan berulang pada suhu ruangan (kamar).

Maserasi merupakan metode ekstraksi yang paling sederhana dan paling banyak digunakan baik dalam skala kecil maupun skala industri (Agoes, 2007). Ketika kesetimbangan tercapai antara konsentrasi senyawa dalam pelarut dengan konsentrasi dalam sel tanaman maka proses ekstraksi dihentikan. Keuntungan utama dari metode maserasi adalah peralatan dan prosedur yang digunakan sederhana, tidak ada proses pemanasan, sehingga bahan tidak mudah terdegradasi dan kerusakan senyawa-senyawa yang termolabil dapat dihindari. (Nurhasnawati et al., 2017). Sedangkan kerugian utama dari metode ini yaitu memakan waktu yang cukup

lama, pelarut yang digunakan cukup banyak dan beberapa senyawa kemungkinan akan hilang (Tetti, M. 2014).

### b. Perkolasi

Perkolasi berasal dari bahasa latin yaitu per artinya "melalui" dan *colare* yang artinya "merembes" (Ansel, H. C. 1989). Perkolasi merupakan ekstraksi menggunakan pelarut yang selalu baru sampai sempurna yang biasanya dilakukan pada suhu ruang. Prosesnya terdiri dari pengembangan bahan, tahap maserasi antara, tahap perkolasi sebenarnya (penetesan/penampungan ekstrak), terus menerus sampai diperoleh ekstrak (perkolat) dengan jumlah 1-5 kali bahan (Depkes RI, 2000).

### 2.3.2.2. Ekstraksi Cara Panas

#### a. Refluks

Refluks merupakan ekstraksi dengan pelarut pada temperatur titik didihnya, selama waktu tertentu dan jumlah pelarut yang relative konstan dan terbatas dengan adanya pendingin balik. Ekstraksi ini umumnya dilakukan proses pengulangan pada residu pertama sampai 3-5 kali sehingga dapat termasuk proses ekstraksi sempurna (Depkes RI, 2000).

#### b. Soxhlet

Soxhlet adalah ekstraksi dengan pelarut yang digunakan selalu baru umumnya dilakukan dengan menggunakan alat khusus sehingga terjadi ekstraksi kontinu dengan jumlah pelarut relative konstan dengan adanya pendingin balik (Depkes RI, 2000). Keuntungan metode ini yaitu pelarut yang digunakan tidak terlalu banyak, waktu relative lebih cepat, sampel yang diekstraksi secara sempurna karena prosesnya dilakukan secara berulang (Febriana et al., 2015).

# c. Digesti

Digesti merupakan metode maserasi kinetik dengan pengadukan kontinu dan secara umum dilakukan pada suhu 40-50°C (Depkes RI, 2000).

#### d. Infus

Infus adalah ekstraksi menggunakan pelarut air pada temperatur penangas air (bejana infus tercelup dalam penangas air mendidih, temperature terukur 96-98°C) dalam waktu 15-20 menit (Depkes RI, 2000).

## e. Dekok

Dekok merupakan infus pada waktu yang lebih lama (≥30°C) dan temperature hingga mencapai titik didih air (Depkes RI, 2000).

### 2.4. Flavonoid

### 2.4.1. Definisi

Flavonoid merupakan senyawa yang memiliki sifat sebagai penangkal radikal bebas dan termasuk senyawa golongan fenol yang tersebar di alam (Pourmourad, 2006;Ipandi, dkk. 2016).

Gambar 2. 3 Struktur Flavonoid

(Gloriana et al., 2021)

Flavonoid di alam sering dijumpai dalam bentuk glikosidanya. Senyawa-senyawa flavonoid ini merupakan zat warna merah, ungu, biru dan sebagian zat warna kuning yang terdapat didalam tanaman. Kemungkinan beberapa fungsi dari flavonoid yang lain untuk tumbuhan adalah sebagai pengatur proses fotosintesis, zat pengatur tumbuh, antivirus, zat antimikroba dan antiinsektisida. Jaringan tumbuhan secara sengaja menghasilkan beberapa flavonoid sebagai respon terhadap infeksi atau luka yang kemudian berfungsi menghambat fungsi menyerangnya. Oleh karena itu, tumbuhan yang mengandung senyawa flavonoid banyak digunakan dalam pengobatan tradisional (Kemenkes, 2016).

Flavonoid berperan dalam kesehatan manusia karena memiliki efek biologis. Beberapa flavonoid memiliki terutama kuersetin meningkatkan kemungkinan untuk dapat mengurangi resiko kanker, penyakit jantung dan *stroke* pada manusia bagi yang mengkonsumsi senyawa ini dan subtansi yang terkait (Anonim, 2008).

#### 2.4.2. Sifat Fisikokimia

Flavonoid merupakan senyawa polar sehingga flavonoid dapat larut dalam pelarut polar seperti etanol, methanol, butanol, aseton, dimetilsulfoksida, dimetilformamida, air dan lain-lainnya. Adanya gula yang terikat dengan flavonoid menyebabkan senyawa ini mudah larut dalam air sehingga campuran pelarut polar denga air adalah pelarut yang baik untuk glikosida (Markham, 1988).

## 2.5. Penetapan Kadar Flavonoid

Penentuan kadar flavonoid total dapat dilakukan salah satunya dengan menggunakan spektrofotometri UV-Vis, karena metode ini memiliki kelebihan yaitu lebih mudah, umum, dan banyak digunakan dalam penetapan kadar flavonoid total (prinsip kolorimetri). Metode kolorimetri banyak digunakan untuk menganalisis struktur flavonoid khususnya golongan flavon dan flavonol (Markham, 1988).

Metode kolorimetri dibagi menjadi dua metode yaitu aluminium klorida dan DNP (2,4-dinitrophenulhydrazine). Metode kolorimetri dengan aluminium klorida banyak dipilih karena prosesnya sederhana, cepat dan mudah untuk dilakukan (Chang dkk., 2001). Prinsip metode kolorimetri dengan aluminium klorida yaitu berdasarkan pembentukan kompleks antara AlCl<sub>3</sub> dengan gugus keton pada atom C-4 dan gugus hidroksil pada atom C-3 atau C-5 dari golongan flavon dan flavonol sehingga menghasilkan warna kuning dan membentuk kompleks gugus *orto*-dihidroksil dalam cincin A atau B pada fkavonoid (Azizah et al., 2014).

Gambar 2. 4 Reaksi AlCl3 dengan Flavonoid (Azizah et al., 2014)

## 2.6. Spektrofotometri UV-Vis

Spektrofotometri Uv-vis adalah alat pengukuran interaksi antara molekul atau atom dari suatu zat dan radiasi elektromagnetik (FI edisi IV, 1995). Spektrofotometri bekerja pada rentang panjang gelombang 200-400 nm untuk ultra violet (UV) dan 400-800 untuk sinar tampak (Vis) (Adeeyinwo et al., 2013). Metode spektrofotometri UV-Vis ini berdasarkan pada pengukuran energi cahaya oleh suatu zat kimia pada panjang gelombang maksimum tertentu. Dimana ketika cahaya putih atau sinar ditembakkan melewati larutan sampel maka sebagian akan diserap (absorbansi) dan sebagian lagi ditransmisikan. Semakin tinggi kadar suatu zat pada suatu sampel, maka semakin banyak molekul yang akan menyerap cahaya pada panjang gelombang tertentu, sehingga nilai absorbansi semakin besar pula (Neldawati, N. 2013).

## 2.7. Uji Stabilitas

### **2.7.1. Definisi**

Menurut Farmakope Indonesia Edisi IV, stabilitas merupakan kemampuan dari suatu produk untuk bertahan dalam spesifikasi yang ditetapkan sepanjang periode penyimpanan dan penggunaan, sifat dan karakteristiknya sama dengan yang dimilikinya pada saat produk dibuat.

Uji stabilitas adalah salah satu parameter kualitas produk yang digunakan untuk menentukan kemampuan suatu produk bertahan dalam spesifikasi yang telah ditetapkan selama periode penyimpanan dan penggunaan. Waktu penyimpanan dan suhu merupakan faktor yang mempengaruhi stabilitas obat (Primadiamanti et al, 2017). Menurut CPOB uji stabilitas dilakukan karena untuk menilai karakteristik stabilitas obat dan untuk menentukan kondisi penyimpanan yang sesuai dengan kadaluwarsa obat (PTRR, P. 2017; Sugiharta & Ningsih., 2021).

## 2.7.2. Metode Uji Stabilitas

Uji stabilitas ada 2 tipe yaitu metode uji stabilitas jangka panjang ( $long\ tern\ stability\ testing$ ) dan metode uji stabilitas dipercepat ( $accelerated\ stability\ testing$ ). Uji stabilitas jangka panjang dilakukan terhadap bahan yang peka terhadap suhu dan disimpan pada suhu ruang. Uji ini dilakukan pada kondisi dengan suhu  $25^{\circ}C \pm 2^{\circ}C$  selama periode minimal 12 bulan. Wadah yang digunakan untuk pengujian ini harus sama dengan iemasan yang digunakan untuk penyimpanan sampai penggunaan (Cartesnen, 1990).

Uji stabilitas dipercepat bertujuan untuk mendapatkan informasi yang diinginkan dalam waktu sesingkat mungkin, menyimpan sediaan dalam kondisi yang telah ditentukan adalah salah satu cara untuk mempercepat proses memulai perubahan yang sering terjadi dalam kondisi normal. Pengujian stabilitas dipercepat menggunakan laju dekomposisi fisik dan kimiawi sehingga pengamatan reaksi dekomposisi dan prediksi umur simpan dapat dilakukan lebih cepat. Sediaan dapat stabil pada suhu ruang dalam jangka 1 tahun apabila diperoleh hasil yang stabil dengan metode uji stabilitas dipercepat dalam waktu pengujian selama 3 bulan (Martin, dkk., 1983:Jusnita & Syah, 2017).