BAB VII. Kesimpulan dan Saran

VII.1 Kesimpulan

- 1. Hubungan Kuantitatif struktur aktivitas (HKSA) dari senyawa turunan timokuinon yang memiliki aktivitas terhadap antikanker ovarium memiliki deskriptor yang paling berpengaruh yaitu Log P, HOMO, HF, E_{thermal}, dan S_{entropi} dengan persamaan HKSA terbaik yang didapat yaitu Log IC₅₀ Prediksi = 7,329 + (0,768 x Log P) + (19,423 x HOMO) + (-1,57E-05 x HF) + (-0,001 x E_{thermal}) + (-0,049 x S_{entropi}).
- 2. Dari 10 desain senyawa baru, ditemukan bahwa 4 senyawa baru yang memiliki aktivitas lebih baik dibandingkan dengan senyawa induk dengan nilai IC50 prediksi yaitu sebesar 2 \times 10⁻³ μM . Pada Tkd2, Tkd5, Tkd8, dan Tkd9 dengan nilai berturut-turut 7 \times 10⁻⁴ μM ; 9 \times 10⁻⁴ μM ; 3 \times 10⁻⁴ μM ; dan 3 \times 10⁻⁴ μM .
- Hasil penambatan molekul pada senyawa uji Tkd2 memiliki binding set dengan energi ikatan yang lebih kecil dengan nilai ΔG sebesar -7,02 kkal/mol dan Ki sebesar 7,20 μM, dengan ikatan hidrogen terhadap residu OE2(GLU353) dan jarak interaksi ikatan sebesar 1,8 Å.
- Prediksi Toksisitas terhadap 10 desain senyawa uji dengan menggunakan PreADMET menunjukkan bahwa pada Tkd2 berpotensi sebagai kandidat senyawa antikanker ovarium yang aman.

VII.2 Saran

Dalam mengoptimalisasi potensi dan selektivitas senyawa turunan timokuinon yang layak dari 3 parameter yang diukur senyawa Tkd2 sebagai antagonis reseptor estrogen α telah layak untuk dilakukan studi lebih lanjut yaitu *molecular dynamic* dan uji *in vitro* untuk melihat efektivitas senyawa turunan timokuinon sebaga antikanker oyarium.