BAB II. TINJAUAN PUSTAKA

2.1. Kulit

2.1.1 Definisi Kulit

Kulit merupakan organ yang melindungi tubuh dari zat berbahaya, mikroorganisme, sinar matahari, dan menjaga keseimbangan tubuh dengan lingkungan. Usia seseorang dapat ditentukan dengan ditandai oleh perubahan struktur kulit (Syaifuddin, dalam (Wahyuningsih & Yuni Kusmiyati, 2017). Terdapat tiga faktor untuk menentukan warna kulit yaitu warna kekuningan dipengaruhi oleh pigmen empedu serta karoten dalam lemak subkutan, warna coklat dalam stratum basal dipengaruhi oleh pigmen melanin, dan warna merah karena kondisi pembuluh darah di dalam dermis dan adanya derajat oksigenasi darah (Kalangi, 2014). Kulit terdiri dari jaringan serabut saraf yang terjalin secara halus berfungsi sebagai indera peraba untuk merasakan sentuhan.

Kulit manusia memiliki luas permukaan rata-rata 2 m², jika ditimbang dengan lemak beratnya 10 kg atau jika ditimbang tanpa lemak yaitu 4 kg, dan terdapat sekitar 16% kulit manusia dari berat badan seseorang. Pada telapak tangan dan telapak kaki adalah bagian yang paling tebal sedangkan daerah pada penis adalah bagian yang paling tipis (Wahyuningsih & Yuni Kusmiyati, 2017). Kulit sangat penting dalam mencegah dehidrasi yang berlebihan serta masuknya kontaminan lingkungan seperti radiasi UV, bahan kimia, dan mikroorganisme. Selain itu, kulit dapat menahan gesekan dan getaran serta dapat merasakan perubahan secara fisik di lingkungan sekitar, hal ini untuk menghindari rangsangan yang kurang nyaman (Wahyuningsih & Yuni Kusmiyati, 2017).

2.1.2 Anatomi Kulit

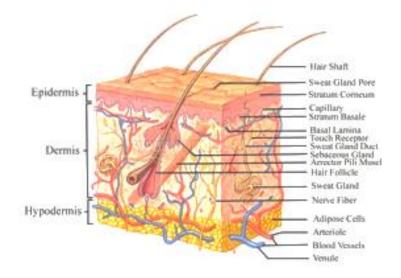
Kulit memiliki 4 penyusun jaringan dasar diantaranya yaitu (Kalangi, 2014):

- A. Jaringan epitel, kulit memiliki berbagai bentuk epitel terutama epitel skuamosa bertingkat dengan lapisan tanduk. Endotelium melapisi pembuluh darah di daerah dermis. Kelenjar epitel termasuk kedalam kelenjar-kelenjar kulit.
- B. Jaringan ikat, pada jaringan ini terdapat berbagai jenis seperti serat kolagen dan elastin, serta sel-sel lemak pada daerah dermis.
- C. Jaringan otot, dermis menyimpan jaringan otot termasuk jaringan otot berpola yang terdapat pada otot yang mengendalikan emosi wajah serta jaringan otot polos yang terdapat pada dinding pembuluh darah dan otot yang meluruskan rambut (*m. arrector pili*).

D. Jaringan saraf, berfungsi sebagai reseptor sensorik pada kulit berwujud badan ujung saraf dan ujung saraf bebas. Badan Meissner dan badan Pacini adalah dua contohnya.

Kulit adalah organ yang terdiri dari epidermis dan dermis yang merupakan lapisan utama serta dibawah dermis terdapat lapisan hipodermis (Kalangi, 2014).

A. Epidermis


Epidermis merupakan jaringan terluar yang hanya terdiri oleh epitel dan oksigen diperoleh melalui dermis karena tidak memiliki pembuluh darah. Disisi lain epidermis menjadi perlindungan utama terhadap radikal bebas. Dibandingkan dengan dermis dan hipodermis, epidermis merupakan komponen utama dengan jumlah lapisan dan sel terbanyak.

B. Dermis

Komponen utama pada dermis yaitu limfatik, saraf, dan pembuluh darah. Pada lapisan dermis ini kaya akan sel leukosit, sel-sel fibrolast, dan terdapat sedikit sel makrofag dan sel mast.

C. Hipodermis

Hipodermis terletak dibawah retikularis dermis, tersusun oleh sel-sel lemak dan jaringan ikat yang mengandung kolagen halus. Kandungan lemak pada hipodermis lebih banyak dibandingkan dengan komponen utama yaitu epidermis dan dermis.

Gambar 2. 1. Struktur Kulit

2.1.3 Fungsi Kulit

A. Sistem Termoregulasi Kulit

Untuk mengontrol aliran darah ke dermis dan mengeluarkan keringat dari permukaan kulit. Selain itu, ketika berolahraga kelenjar ekrin menghasilkan lebih banyak keringat yang menyebabkan menurunnya suhu tubuh dan permukaan kulit mengerluarkan

keringat. Oleh karena itu, pembuluh darah dermis akan melebar untuk memungkinkan darah mengalir ke sana, yang akan menyebabkan tubuh mengeluarkan lebih banyak panas. Disudut pandang lain pada iklim yang lebih dingin, aliran darah dermal akan menyempit dan produksi kelenjar ekrin meurun hal ini yang akan mengurangi kehilangan panas pada tubuh (Tortora & Derrickson Bryan, 2009).

B. Unit Penyimpanan Darah

Dermis manusia dewasa membawa 8-10% dari total pembuluh darah tubuh saat istirahat berkat jaringan pembuluh darahnya yang besar (Totora & Derrickson Bryan, 2009).

C. Proteksi Kulit

Memproteksi dengan berbagai pertahanan bagi tubuh. Jaringan di bawahnya dilindungi oleh keratin dari bakteri, abrasi, panas, dan bahan kimia. Lipid yang disekresikan oleh lamellar granules untuk mencegah tubuh mengalami dehidrasi dengan mencegah air menguap dari permukaan kulit. Lipid juga membantu mengurangi kecepatan masuknya air saat mandi atau berenang. Minyak sebum kelenjar *sebaceous* membantu dalam perawatan kulit dan rambut kering dan memiliki kemampuan bakterisidal untuk menghilangkan mikroorganisme di permukaan. Keringat yang mengandung pH asam dapat membantu beberapa mikroorganisme tumbuh lebih lambat. Efek berbahaya sinar ultraviolet dapar di proteksi oleh pigemn melanin (Tortora & Derrickson Bryan, 2009).

D. Ekskresi dan Absorbsi

Meskipun tahan air, *stratum korneum* kehilangan 400 mL air per hari karena penguapan. Selain berfungsi sebagai cara tubuh melepaskan panas dan air, keringat juga mengangkut berbagai garam, karbon dioksida, dan dua senyawa kimia yang dibuat dari pemecahan protein: amonia dan urea. Senyawa yang larut dalam air dapat diserap melalui kulit tanpa perlu ditangani, tetapi beberapa obat, beberapa vitamin yang larut dalam lemak (E, A, D, dan K), serta gas oksigen dan karbon dioksida, dapat melewati kulit. Kulit juga dapat menyerap beberapa zat beracun termasuk aseton, karbon tetraklorida, dan garam logam berat seperti timbal, arsenik, dan merkuri (Tortora & Derrickson Bryan, 2009).

E. Cutaneous Sensations

Sensasi kulit adalah sensasi yang berasal dari kulit dan termasuk sensasi termal seperti panas dan dingin serta sensasi sentuhan seperti sentuhan, tekanan, dan getaran. Nyeri adalah bentuk sensasi kulit lainnya, biasanya rasa sakit adalah tanda bahwa ada atau akan ada jaringan yang terluka. Terdapat banyak susunan akhiran saraf dan reseptor termasuk sel darah yang ada di dalam dermis dan pleksus akar rambut di setiap folikel rambut (Tortora & Derrickson Bryan, 2009).

2.2 Platelet-Rich Plasma

2.2.1 Definisi Platelet-Rich Plasma

PRP (platelet-rich plasma) merupakan komponen darah produk aktif biologis autologus yang diperkaya dengan sejumlah faktor pertumbuhan, sitokin, dan protein plasma lainnya (Lin et al., 2020). PRP adalah komponen plasma darah autologous dengan sejumlah besar trombosit. Umumnya memiliki konsentrasi trombosit 3 hingga 5 kali lipat lebih tinggi daripada darah utuh. PRP mengandung trombosit konsentrasi tinggi dengan berbagai macam protein bioaktif menunjukkan bahwa PRP dapat mempercepat proses regenerasi dan penyembuhan jaringan (Lee et al., 2020). Autologous diperoleh dari darah manusia itu sendiri atau tubuh itu sendiri. PRP memiliki banyak platelet yang terdiri dari faktor pertumbuhan dan elemen lainnya, yang sangat membantu proses penyembuhan regeneratif. Faktor pertumbuhan, peran proses penyembuhan, agen kemotaktik, dan agen vasoaktif yaitu beberapa komponen yang terkandung dalam plasma kaya trombosit, atau yang sering disebut plasma kaya trombosit. Darah manusia biasanya mengandung antara 150.000 dan 350.000 trombosit per mikroliter. PRP didefinisikan sebagai 1.000.000 trombosit per mikroliter dalam volume kecil plasma dengan faktor pembekuan lengkap (Lin et al., 2020). Platelet Rich Plasma (PRP) diketahui memiliki kemampuan melawan radikal bebas dan spesies oksigen reaktif (ROS), meningkatkan antioksidan dan memiliki efek anti inflamasi (Nyoman Ehrich Lister & Sihombing, 2022).Keamanan PRP merupakan persiapan autologous, sehingga aman dan toleran pada infiltrasi. Jarang ditemukan peradangan lokal ringan reaksi atau infeksi postpuncture (Langer & Mahajan, 2014)

2.2.2 Growth Factor

Growth factor Platelet derived di dalam matriks tulang dihasilkan oleh platelet darah selama proses pembekuan darah. Growth factor ini mengaktifkan angiogenesis dan memicu migrasi, proliferasi sel fibroblast, sementoblast, dan osteoblast setelah berikatan dengan reseptor tertentu. Tubuh memiliki faktor pertumbuhan secara alami yang membantu pertumbuhan sel baik dalam proliferasi maupun diferensiasi atau yang disebut dengan growth factor. PRP bekerja dengan menghancurkan komponen trombosit yang mengandung faktor pertumbuhan. PRP mengandung tujuh faktor pertumbuhan, termasuk VEGF, EGF, FGF, IGF-1, PDG, TGF β-1, dan HGF (Taniguchi et al., 2019).

TGF-beta (TGF-β) aktif selama peradangan dan mempengaruhi peraturan migrasi dan proliferasi seluler, mengikat interaksi fironektin, dan merangsang replikasi sel. VEGF diproduksi paling banyak setelah fase inflamasi. Ini menunjukkan kemungkinan penggerak

angiogenesis. Proses penyembuhan luka pertama dikenal sebagai fase inflamasi, yang dimulai segera setelah cedera dan dapat berlangsung selama empat hingga enam hari. PDGF berperan dalam remodeling jaringan dan mendorong produksi faktor pertumbuhan lainnya. Faktor pertumbuhan dalam PRP dapat menginduksi regenerasi sel β dan meningkatkan massa sel β dengan merangsang neogenesis sel β dan diferensiasi sel duktal menjadi sel β , seperti yang terdeteksi oleh peningkatan kadar c-peptida (Younis, 2019).

2.2.3 Manfaat PRP

PRP sudah mengalami perkembangan dan semakin maju, banyak manfaat dari PRP diantaranya dari segi tindakan medis, dermatologi, dan segi kecantikan. PRP dapat meremajakan kulit dan mengobati luka bakar, maag kronis, ulkus diabetik, dan kerontokan rambut (Satriyo *et al*, dalam Younis, 2019). PRP juga dapat digunakan untuk mengobati daerah gelap di bawah lingkaran mata pada orang mudan dan menghilangkan bekas jerawat.

A. Peremajaan Kulit

Kolagen terfragmentasi fibril terkumpul, menghentikan neocollagenesis dan menyebabkan kerusakan matriks ekstraseluler (ECM). Metode anti-penuaan konvensional, seperti perawatan topikal dan laser, mengaktifkan fibroblas untuk meningkatkan sintesis matriks ekstraseluler (ECM). Fibroblas kulit manusia (HDF) distimulasi oleh Grow Factor yang berbeda, seperti PDGF, TGF, VEFG, dan IGF yang hadir dalam PRP. Aplikasi topikal PRP atau injeksi langsung ke kulit mengubah matriks ekstraseluler (ECM) dan mendorong sintesis kolagen baru oleh fibroblas. Ekspresi protein MMP1 dan MMP-3 meningkat setelah PRP, dan level kolagen tipe 1 meningkat. Dengan menggunakan microneedles dan laser telah dicoba untuk memperbaiki remodeling kulit dengan memicu reaksi inflamasi ringan. Namun, hasil PRP lebih baik untuk merevitalisasi wajah dan leher (Cheena dan Vivek, 2014).

B. Bekas Luka dan Kerusakan Kulit

Bekas luka di wajah memiliki efek psikologis dan kosmetik. Teknik seperti pengisi, pencangkokan lemak, pengelupasan kimia, laser, dan dermabrasi telah dicoba tetapi tidak berhasil. Efektivitas PRP dalam penyembuhan luka telah mendorong untuk digunakan dalam pengobatan bekas luka wajah. Penggunaan fototerapi light-emitting diode (LED) atau laser fraksional bersama dengan PRP telah menunjukkan peningkatan signifikan dalam hasil kosmetik dan peremajaan kulit. Untuk memperbaiki lipatan nasolabial yang dalam, *Platelet Rich Fibrin* (PRF), generasi kedua trombosit konsentrat, telah digunakan sebagai pengisi. Selain memiliki kapasitas peremajaannya sendiri, PRP memiliki efek booster pada cangkok lemak, yang membantu proses transfer lemak

autologous. PRP membantu kulit yang rusak oleh laser pulih dan mempercepat remodeling jaringan dengan meningkatkan sintesis kolagen. Oleh karena itu PRP memberikan kontribusi yang menjanjikan dalam peningkatan jaringan lunak (Cheena dan Vivek, 2014).

2.2.4 Proses Pembuatan PRP

Pada penggunaan PRP penderita HIV dan hepatitis tidak diperkenankan untuk menjalani serangkaian PRP. Prinsip proses pembuatan PRP yaitu dibuat menggunakan proses sentrifugasi ganda. Sumber PRP yaitu dari darah diri sendiri atau pasien yang ingin menggunakan PRP. Darah diproses menggunakan alat *centrifuge*. Darah akan dibagi menjadi tiga lapisan selama sentrifugasi awal: lapisan atas (plasma), lapisan tengah (leukosit dan trombosit), dan lapisan dasar (eritrosit). Sentrifugasi kedua di peroleh PPP (*Platelet Poor Plasma*) pada bagian atas dan PRP (*Platelet-Rich Plasma*) pada bagian bawah (Younis, 2019).

Gambar 2. 2. Proses Pembuatan PRP

2.3 Asiatikosida

2.3.1 Kandungan Daun Centella asiatica

Gambar 2. 3. Tanaman Pegagan

Klasifikasi Pegagan

Menurut Anonim (2010), tanaman pegagan diklasifikasikan sebagai berikut :

Divisi: Magnoliophyta

Kelas: Magnoliopsida

Subkelas: Rosidae

Bangsa : Apiales

Suku : Apiaceae

Marga: Centella

Jenis: Centella asiatica (L.) Urb.

Komponen pegagan *Centella asiatica* (L) Urb terdiri dari berbagai bahan aktif, termasuk triterpenoid saponin, triterpenoidgenin, minyak essensial, flavonoid, fitosterol, dan bahan aktif lainnya. Triterpenoid saponin juga merupakan bahan aktif paling penting dari beberapa bahan aktif lainnya, seperti asam asiatik, asiatikosida, madekosida, dan centellosida, madekosida (Winarto, 2003). Sifat biologis *Centella asiatica* berasal dari komponen aktifnya, seperti asiatikosida dan madekosida. Ada tiga triterpen aktif: asam asiatik, asam madekosida, dan asiatikosida. Menurut banyak penelitian, sifat penyembuhan ramuan ini disebabkan oleh adanya triterpen. *Centella asiatica* juga dianggap memiliki sifat anti kerut, antioksidan, penambah memori, antikanker, dan antidepresan. Antioksidan enzim tanaman pegagan termasuk gluthation peroxidase, katalase, dan superoksida dismutase. Tanaman pegagan juga mengandung antioksidan vitamin dan antioksidan enzim. Vitamin E dan C termasuk ke dalam antioksidan tanaman pegagan.

2.3.2 Deskripsi Asiatikosida

Asiatikosida adalah komponen aktif dari komponen *Centella asiatica*. Menurut Zainol *et al.*, 2008, pada senyawa asiatikosida mempunyai aktivitas antioksidan yang kuat karena pegagan menyimpan berbagai bahan kimia triterpenoin (Saputri & Damayanthi, 2015). Komponen utama dalam pegagan yaitu asiatikosida yang termasuk golongan saponin triterpen (Putri *et al.*, 2016). Triterpenoid ditemukan sebagai saponin karena perlekatan molekul gula pada unit triterpen adalah definisi lain dari asiatikosida. Memahami bioaktivitas molekuler *Centella asiatica* dalam penyembuhan luka bergantung pada fakta bahwa Asiatikosida meningkatkan sintesis kolagen tipe I melalui aktivasi TGF-B *receptor I kinase-independent Smad pathwa*. Asiatikosida dalam *Centella asiatica* memainkan peran penting penting dalam meningkatkan aktivasi kadar antioksidan yang dapat membantu pada tahap awal penyembuhan luka (Cahya Sabila & Muhartono, 2020).

Poliferasi fibroblas dan matriks ekstraseluler (ECM) yaitu dua proses yang sangat penting dalam penyembuhan luka, Asiatikosida bekerja dengan keduanya. Dengan cara meningkatkan produksi kolagen, epitelisasi, komponen hidroksiprolin peptik, *tensile strength*,

dan angiogenesis, yang dapat membantu proses penyembuhan luka, Asiatikosida yang ditemukan di *Centella asiatica* ini akan mendorong proses penyembuhan luka selama fase remodeling penyembuhan luka (Cahya Sabila & Muhartono, 2020). Sifat antioksidan Asiatikosida dapat mengubah ekspersi gen, sebagai antinflamasi, penyembuh luka, neuroprotektif, mengurangi pembentukan bekas luka, dan meningkatkan biosistensis kolagen. Digunakan sebagai herba, bagian *Centella asiatica* yang mengandung Asiatikosida ditemukan pada batang (15,9 %), daun (82,6 %), dan akar (1,5 %), sehingga digunakan sebagai herba (Zulkarnaen, *et al.*, 2016).

Gambar 2. 4. Struktur Kimia Asiatikosida

2.4 Antioksidan

2.4.1 Definisi Antioksidan

Antioksidan merupakan senyawa yang dapat menetralkan dan meminimalisir efek berbahaya dari dampak negatif oksidan yang terdapat dalam tubuh. Antioksidan berfungsi dengan memberikan elektron pada senyawa yang bersifat negatif oksidan sehingga aktivitasnya dapat terhambat (Winarsi, dalam Haerani *et al.*, 2018). Antioksidan adalah molekul yang mampu mencegah molekul lain yang teroksidasi (Haerani *et al.*, 2018). Zat kimia yang disebut antioksidan dapat melindungi sel dari bahaya yang dapat ditimbulkan oleh radikal bebas. Tingginya kadar malondialdehid (MDA) serta rendahnya aktivitas enzim antioksidan dalam plasma ini merupakan indikator tingginya beban radikal bebas dalam tubuh (Zakaria, dalam Haerani *et al.*, 2018). Oleh karena itu antioksidan sangat penting bagi tubuh kita karena dapat membantu mempertahankan tubuh dari serangan radikal bebas dan mengurangi efek berbahayanya.

2.4.2 Jenis-Jenis Antikosidan (Haerani *et al.*, 2018)

A. Antioksidan Endogen

Enzim yang menghilangkan oksidan secara katalitik dapat dianggap sebagai antioksidan endogen. Katalase, glutathione peroksidase, superoksida dismutase, dan superoksida reduktase adalah antioksidan endogen yang penting. Enzim ini sangat penting untuk menurunkan kadar oksidan dan menghindari kerusakan oksidatif.

B. Antioksidan Eksogen

Antioksidan yang berasal dari lingkungan luar tubuh disebut antioksidan eksogen. Contohnya alkaloid, saponin, vitamin C, vitamin E, dan zat lain yang terdapat dalam makanan dan sumber bahan lainnya.

C. Antioksidan dari Tanaman

Untuk mengendalikan stres oksidatif yang disebabkan oleh sinar matahari dan oksigen dapat dikendalikan oleh tumbuhan yang menghasilkan banyak antioksidan. Tanaman juga dapat berfungsi sebagai sumber molekul baru dengan aktivitas antioksidan (Jain & Agrawal, 2008; Haerani *et al.*, 2018).

2.4.3 Manfaat Antioksidan Untuk Kulit

Senyawa oksigen dan nitrogen menghasilkan radikal bebas yang merupakan salah satu penyebab utama penuaan yang disebabkan oleh perubahan gangguan regulasi metabolisme. Antioksidan mempunyai banyak manfaat bagi kesehatan kulit, termasuk anti-penuaan, perlindungan dari ROS yang disebabkan oleh stres oksidatif, dan perlindungan dari radiasi UV (Haerani *et al.*, 2018).

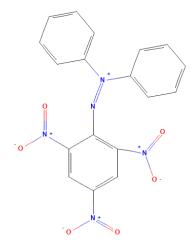
A. Antipenuaan

Proses penuaan secara signifikan dipengaruhi oleh stres oksidatif. Supaya organisme menghasilkan energi selama proses metabolisme biologis mendapatkan oksidasi yang tepat itu sangat penting. Namun, karena ketidakseimbangan antara sistem pertahanan antioksidan dan produksi radikal bebas yang berasal dari oksigen, stres oksidatif yang parah dalam metabolisme energi dapat menyebabkan mutasi dan pada akhirnya berbagai penyakit kronis (Zhong *et al.*, 2013;Haerani *et al.*, 2018).

B. Perlindungan dari UV

Sinar UVA (320–400 nm) menyebabkan kerusakan jangka panjang dengan menembus dermis lebih dalam, meningkatkan pembentukan ROS. Faktor lingkungan, terutama sinar UV, berdampak konstan pada kulit. Radikal bebas yang dihasilkan oleh radiasi UV pada kulit dapat merusak DNA dan protein, mengganggu membran keratinosit, serta mempercepat proses penuaan sel kulit. Kulit berubah akibat paparan sinar UV, menyebabkan *photoaging* inflamasi dan berbagai kondisi kelainan kulit. Antioksidan dapat menekan produksi oksigen reaktif yang dibawa

oleh sinar UV dan juga meningkatkan efek anti-inflamasi dan anti-penuaan. (Haerani *et al.*, 2018).


C. Perlindungan dari ROS

Antioksidan mencegah prosuksi ROS dengan cara membelah langsung, menghentikannya mencapai tujuan biologisnya, membatasi penyebaran oksidan selama peroksidasi lipid, meminimalkan produksi jumlah oksidan di dalam dan di sekitar sel, dan menghindari stres oksidatif sehingga menghambat proses penuaan. (Pouillot *et al.*, 2011;Haerani *et al.*, 2018).

2.4.4 Pengujian Antioksidan dengan Metode DPPH

Kemampuan senyawa antiradikal untuk mengambil radikal bebas, yang merupakan aktivitas antioksidan dikenal sebagai DPPH. Senyawa organik yang memiliki atom nitrogen yang tidak stabil dan panjang gelombang maksimum 517 nm adalah senyawa antiradikal. Dengan menggunakan teknik DPPH (2,2-difenil-1-pikrilhidrazil), seseorang dapat mengukur seberapa baik bahan kimia antioksidan dapat menyerap radikal bebas. Metode penangkapan radikal DPPH (1,1-difenil-2 pikrilhidrazil) digunakan untuk menguji aktivitas antioksidan secara kuantitatif. DPPH turun dan menjadi kuning setelah berinteraksi dengan senyawa antioksidan. Dengan menggunakan spektrofotometer, perubahan tersebut dapat diukur dan diplotkan terhadap konsentrasi (Reynertson, 2007). Berkurangnya ikatan rangkap terkonjugasi pada DDPH menyebabkan penurunan intensitas warna. Ini dapat terjadi ketika satu elektron diambil oleh zat antioksidan, yang menghilangkan peluang elektron tersebut untuk beresonansi (Pratimasari, 2009). Jika ada antioksidan yang dapat memberikan elektron kepada DPPH, reaksi radikal DPPH akan berwarna kuning (Vaya dan Aviram, 2001). Setelah elektron berpasangan, penangkap radikal bebas menghilangkan warna. Nilai IC50 suatu senyawa kurang dari 50 dikatakan sebagai antioksidan sangat kuat IC50 <50, rentang 50-100 antioksidan kuat, rentang 100-150 antioksidan sedang, dan rentang 151-200 yaitu antioksidan lemah. Nilai antioksidan yang kuat ditunjukkan dengan penurunan nilai IC50 (Tristantini et al., 2016). Aktivitas antioksidan dapat dihitung menggunakan rumus seperti dibawah ini:

% Aktivitas Antioksidan = $\frac{absorbansi\ kontrol-absorbansi\ sampel}{absorbansi\ kontol}\ x\ 100\%$

Gambar 2. 5. Struktur Kimia DPPH

2.5 Lotion

2.5.1 Definisi *Lotion*

Menurut Farmakope Indonesia III mendefinisikan *lotion* sebagai sediaan cair yang digunakan sebagai obat luar dalam bentuk suspensi atau dispersi. Ini dapat berbentuk padat dalam bentuk bubuk halus dengan zat pensuspensi yang sesuai atau emulsi dari jenis yang terlihat dalam minyak dalam air dengan surfaktan yang sesuai (DepKes RI, 1979). Kombinasi dua fase yang tidak dapat bercampur yang distabilkan oleh sistem emulsi, yang jika ditempatkan pada suhu kamar menghasilkan cairan yang dapat dituang, adalah definisi lain dari *lotion* (Schmitt, 1996). Air biasanya merupakan zat pembawa untuk sediaan *lotion*. *Lotion* dapat dibuat dengan cara yang sama seperti suspensi atau emulsi, tergantung pada sifat bahannya. *Lotion* dibuat untuk diaplikasikan pada kulit sebagai lapisan pelindung atau untuk alasan pengobatan karena sifat bahan-bahannya. *Lotion* dapat dengan cepat dan merata diaplikasikan pada area kulit yang luas karena sifatnya yang cair. Bentuk sediaan *lotion* dirancang agar setelah pemakaian cepat diserap oleh kulit dengan tetap meninggalkan lapisan tipis bahan obat pada kulit (Ansel, 2008).

Dalam proses pembuatan sediaan *lotion*, formulator harus mempertimbangkan tujuan *lotion* yang akan dibuat. *Lotion* biasanya terdiri dari pelembab, pengemulsi, pengisi, pembersih, bahan aktif, pelarut, pewangi, dan pengawet untuk menjaga kelembapan kulit, menghentikan kehilangan air, dan menahan zat aktif (Setyaningsih, *et al.*, 2007).

Alasan pemilihan sediaan *lotion* lebih disukai daripada terapi topikal lainnya adalah karena sediaan tersebut berbahan dasar emulsi yang dapat dengan mudah dihilangkan dengan air dan tidak lengket. Disisi lain, bentuknya yang cair memungkinkan untuk diaplikasikan

pada kulit secara cepat dan merata (Slamet & Waznah, 2019). Manfaat lainnya antara lain kemudahan aplikasi, daya sebar dan penetrasi yang besar, tidak menimbulkan rasa berminyak, efek mendinginkan, dan mudah dibilas dengan air bila bentuk sediaan *lotion* ini memiliki kandungan air yang cukup (Iskandar *et al.*, 2021). Secara fisik *lotion* berbeda dengan krim yaitu lebih mudah dituang, sedangkan krim memiliki kekentalan yang tinggi sehingga sulit untuk dituang. Oleh karena itu *lotion* merupakan emulsi cair. Ada dua jenis emulsi yang terdapat pada bahan dasar kosmetik adalah emulsi jenis minyak dalam air (M/A) dan emulsi jenis air. Sebaliknya, emulsi dengan fase air bagian dalam dan fase minyak bagian luar dikenal sebagai emulsi tipe air dalam minyak (A/M) (Lachman *et al*, 1994). Tujuan sediaan *lotion* adalah untuk menjaga kelembaban kulit, bersih, menghambat kehilangan air, atau menjaga komponen aktif.

2.5.2 Evaluasi Sediaan Lotion

A. Uji Organoleptik

Pengujian organoleptik merupakan cara pengujian dengan memanfaatkan alat indera manusia untuk menilai kualitasi produk dengan cara melihat warna, bau, dan bentuk secara langsung (Megantara, 2017).

B. Uji pH

Untuk mengetahui apakah pH *lotion* yang dihasilkan memenuhi standar atau tidak adalah tujuan dari penentuan pH. Bahan-bahan yang lebih asam dapat menyebabkan kulit kering dan pecah-pecah yang rentan terhadap penyakit. Oleh karena itu, pH kosmetik harus sedekat mungkin dengan pH kulit. Untuk melakukan pengujian ini, ditimbang 1 gram *lotion* dan dicampurkan dengan 10 mL aquadest. pH formulasi *lotion* juga diukur menggunakan pH-meter (Megantara, 2017). Selain itu pH *lotion* harus berada di antara 4,5 dan 8,0 (SNI 16-4399-1996).

C. Uji Homogenitas

Ada atau tidaknya butiran kasar menunjukkan homogenitas sediaan. Keseragaman jumlah zat aktif dalam penggunaan sediaan disebut homogenitas (Lachman *et al.*, 1994). Perataan fase terdispersi dalam bahan pendispersi, tidak adanya agregasi partikel sekunder, distribusi fase terdispersi yang merata dan teratur, dan penghalusan partikel primer yang besar adalah semua faktor yang membentuk uji homogenitas. Menurut Mardikasari *et al.* (2017), dikatakan homogen karena *lotion* tercampur secara merata dan memiliki warna yang sama.

D. Uji Viskositas

Pengujian viskositas ini dilakukan untuk mengetahui viskositas sediaan; viskositas merupakan besarnya tahanan suatu cairan untuk mengalir. Nilai viskositas yang memenuhi syarat yaitu antara 2.000 dan 50.000 cPs (SNI No. 16-4399-1996).

E. Uji Daya Sebar

Kemampuan sediaan untuk menyebar di tempat aplikasi dikenal sebagai daya sebarnya, yang ditentukan oleh sudut kontak sediaan dengan tempat aplikasinya. Untuk melakukan evaluasi ini, sejumlah zat tertentu diletakkan di atas kaca berskala dan kemudian diberi waktu 1-2 menit untuk meningkatkan beban. Kemudian, dengan setiap penambahan beban, diameter penyebaran diukur setiap kali, sampai sediaan berhenti menyebar pada waktu tertentu. Penyebaran yang baik dari 5 hingga 7 cm (Garg, 2002 dalam Arisanty *et al.*, 2021).