BAB II TINJAUAN PUSTAKA

II.1 Obgyn (Obstetri dan Ginekologi)

Nama "Obstetri" yang berasal dari kata latin "*obstare*", yang artinya siaga mengacu pada spesialisasi bedah yang berfokus pada kesehatan wanita selama kehamilan, persalinan, dan masa nifas. Meski mengacu pada layanan yang sama dengan kebidanan, obstetri lebih sering merupakan kegiatan yang terkait dengan prosedur pembedahan (Nurbadriyah, 2018).

Ginekologi yang merupakan ilmu yang mempelajari sistem reproduksi wanita, dari sinilah kita mendapatkan kata "ginekologi" (ilmu tentang wanita). Lebih spesifiknya, cabang ilmu yang menyelidiki dan membahas masalah-masalah yang berkaitan dengan kesehatan organ reproduksi wanita (organ rahim yang terdiri dari rahim, vagina dan indung telur). Di beberapa bagian dunia, kebidanan dan ginekologi dianggap sebagai dua disiplin ilmu kedokteran yang berbeda. Di sisi lain, sebagian besar dokter kandungan juga merupakan dokter kebidanan (Nurbadriyah, 2018).

II.2 Antibiotik

II.2.1 Definisi Antibiotik

Antibiotik adalah obat yang digunakan untuk mengatasi infeksi bakteri. Antibiotik bisa bersifat bakterisid (membunuh bakteri) atau bakteriostatik (menghambat berkembang biaknya bakteri). Antibiotik dikelompokkan berdasarkan mekanisme kerja, struktur kimia, dan spektrum aktivitas antibakterinya (Kemenkes, 2021).

Antibiotik adalah obat yang digunakan untuk pencegahan atau pengobatan infeksi oleh bakteri. Penggunaan antibiotik yang tidak tepat atau berlebihan menyebabkan resistensi. Resistensi antibiotik terjadi ketika bakteri tidak memberikan respon terhadap pemberian antibiotik (WHO, 2020).

II.2.2 Penggolongan Antibiotik

- Antibiotik Berdasarkan Spektrum Aktivitas
 Berdasarkan spektrum aktivitas, antibiotik dibagi menjadi dua golongan, yaitu:
 - a. Antibiotika spektrum luas (*broad spectrum*)
 Contoh antibiotik yang efektif melawan bakteri gram positif dan gram negatif adalah tetrasiklin dan sefalosporin. Antibiotik dengan spektrum aktivitas yang luas sering diresepkan untuk pengobatan infeksi menular yang belum didiagnosis secara positif melalui kultur dan uji kerentanan (Febiana dan Hapsari, 2012).

b. Antibiotika spektrum sempit (*narrow spectrum*)

Kategori ini sangat berguna untuk melawan satu kelompok organisme tertentu. Penisilin dan eritromisin adalah dua contoh antibiotik yang digunakan dalam pengobatan infeksi yang dibawa oleh bakteri gram positif. Antibiotik dengan spektrum terbatas membunuh organisme tunggal lebih efektif daripada antibiotik dengan cakupan luas karena antibiotik spektrum sempit bersifat selektif (Febiana dan Hapsari, 2012).

2. Antibiotik Berdasarkan Mekanisme Kerja

Berdasarkan mekanisme kerjanya, antibiotika/antimikroba dibagi kedalam lima kelompok:

a. Inhibitor sintesis dinding sel

Sebagian besar sel bakteri dilindungi dari tekanan osmotik oleh lapisan peptidoglikan (PG) yang tebal, yang ditutupi lapisan peptidoglikan. Lapisan ini konsisten dengan lingkungan dan kondisi sel. Sintesis peptidoglikan sangat penting untuk kelangsungan hidup bakteri, dan proses ini dilakukan oleh fungsi transglikosilase dan transpeptidase dari protein PBP. Rantai ikatan silang dari unit peptidoglikan yang belum matang dan rantai glikan dari molekul peptidoglikan yang ada diperpanjang dengan penambahan disakarida pentapeptida oleh kedua enzim ini, yang memainkan peran penting dalam proses tersebut. Menghambat pembentukan ikatan peptida oleh PBP adalah mekanisme yang memungkinkan antibiotik tertentu, seperti penisilin, karbapenem, dan sefalosporin, untuk mencegah ikatan silang unit peptidoglikan.

Mayoritas antibiotik yang termasuk dalam golongan antibiotik glikopeptida (seperti vankomisin) menekan pertumbuhan bakteri dengan cara menghambat pembuatan peptidoglikan. Ini adalah salah satu mekanisme kerja antibiotik glikopeptida. Mereka mencapai ini dengan menempel pada unit peptidoglikan, yang menghalangi aktivitas transglikosilase dan transpeptidase. Ini menghasilkan penghambatan sintesis peptidoglikan (Etebu and Arikekpar, 2016).

b. Inhibitor sintesis protein

Dengan merusak kemampuan subunit ribosom 50S untuk berfungsi, seperti dalam kasus antibiotik golongan linezolid, klindamisin, makrolida, dan streptogramin. Selain itu, obat-obatan seperti tetrasiklin dan aminoglikosida yang mengganggu fungsi subunit ribosom 30S menyebabkan bakteri berkembang biak (Etebu and Arikekpar, 2016).

c. Menghambat sintesa folat

Obat-obatan seperti trimetoprim dan sulfonamid memiliki cara kerja ini. Bakteri tidak dapat menyerap asam folat; sebaliknya, itu harus diproduksi dari glutamat dan PABA (asam para amino benzoat). Meskipun asam folat adalah vitamin, tubuh manusia tidak dapat memproduksinya. Ini merupakan target yang efektif dan khusus untuk zat antibakteri (Pratiwi, 2017).

d. Mengubah permeabilitas membran sel

Memiliki tindakan bakteriostatik, yang mengurangi permeabilitas membran dan menyebabkan sel lisis akibat hilangnya bahan seluler. Amfoterisin B, gramisidin, nistatin, polimiksin, dan kolistin merupakan obat dengan aktivitas ini (Pratiwi, 2017).

e. Mengganggu sintesis DNA.

Banyak obat termasuk metronidazole, quinolone, dan novobiosin, memiliki cara kerja yang sama. Obat-obatan ini memiliki kemampuan untuk menurunkan sintesis DNA girase. Enzim bakteri yang disebut DNA gyrase mencegah replikasi DNA dengan membuka molekul DNA dan menciptakan super helix (Pratiwi, 2017).

f. Mengganggu sintesa RNA, seperti rifampisin.

Tindakan ini bekerja dengan mencegah sintesis asam inti (DNA dan RNA) yang mencegah pertumbuhan sel (Pratiwi, 2017).

II.2.3 Penggunaan Antibiotik

Penggunaan antibiotik yang bijak memperhatikan dampak akibat dari munculnya penyebaran mikroorganisme yang resisten. Penatagunaan antibiotik yang meliputi penentuan diagnosis, dosis, pemilihan jenis antibiotik, rute, interval, dan durasi pengobatan yang tepat, berupaya untuk meningkatkan *outcome* pasien dengan meningkatkan kualitas penggunaan antibiotik (Kemenkes, 2021).

Antibiotik dengan bijak yaitu bila diberikan sesuai dengan sumber infeksi, dengan efek samping yang paling sedikit, dalam waktu yang paling singkat, dan dengan pengaruh negatif yang paling kecil terhadap munculnya mikroorganisme yang resisten. Oleh karena itu, upaya untuk mengidentifikasi etiologi dan pola sensitivitas infeksi harus dilakukan saat pemberian antibiotik (Permenkes 2015).

Data resistensi menunjukkan terdapat 70% bakteri yang sudah resisten terhadap antibiotik yang sering dipakai di rumah sakit (Permenkes, 2015).

II.2.4 Resistensi Antibiotik

Resistensi antibiotik merupakan salah satu masalah kesehatan global yang paling penting saat ini karena memiliki dampak yang cukup besar pada peningkatan morbiditas dan mortalitas serta pengeluaran perawatan kesehatan. Resistensi antibiotik muncul dan kemudian berkembang sebagai akibat dari tekanan seleksi, namun hal ini dapat dicegah dengan penggunaan antibiotik secara bijak (Kristiani *et al.*, 2019).

AMR atau resistensi antimikroba yakni berkurangnya kapasitas agen antimikroba untuk membasmi dan mencegah pertumbuhan mikroorganisme seperti bakteri, virus, jamur, dan parasit. Jika tidak ada yang dilakukan untuk mencegah dan mengendalikan hal ini, maka akan sangat berbahaya (Kemenkes, 2021).

Mengingat pentingnya isu resistensi antimikroba, maka upaya penetapan kebijakan pengendalian resistensi dengan Program Pengendalian Resistensi Antibiotik (PPRA) di Rumah Sakit, sebagaimana diatur oleh Peraturan Menteri Kesehatan Republik Indonesia No. 8 Tahun 2015, merupakan salah satu langkah konkrit yang telah diambil pemerintah untuk mencegah berkembangnya resistensi antibiotik. Menurut PMK tersebut, setiap rumah sakit harus melaksanakan Program Pengendalian Resistensi Antimikroba secara efektif. Tim pelaksana PPRA merencanakan, menyelenggarakan, melaksanakan, memantau, dan mengevaluasi Program Pengendalian Resistensi Antimikroba di Rumah Sakit (Permenkes, 2015).

II.3 Evaluasi Penggunaan Antibiotik Secara Kuantitatif

Evaluasi penggunaan antibiotik ialah indikator mutu program pengendalian resistensi antimikroba yang berupaya menawarkan informasi kuantitatif dan kualitatif mengenai pola penggunaan antibiotik di rumah sakit, dan merupakan upaya yang baik untuk efektivitas strategi pengendalian resistensi antimikroba di rumah sakit. Rekam medis digunakan sebagai sumber data dalam evaluasi penggunaan antibiotik di rumah sakit (Permenkes, 2015).

Jumlah penggunaan antibiotik di rumah sakit adalah jumlah total penggunaan antibiotik yang ditentukan oleh studi retrospektif, prospektif, dan validasi. Studi validasi adalah studi yang berupaya mengidentifikasi perbedaan antara jumlah antibiotik yang benar-benar digunakan dan yang dicatat dalam berkas medis pasien (WHO, 2015).

II.3.1 Sistem Klasifikasi Anatomical Therapeutic Chemical (ATC)

Organisasi Kesehatan Dunia (WHO) menyarankan untuk mengkategorikan penggunaan antibiotik menggunakan Klasifikasi *Anatomical Therapeutic Chemical* (ATC) dan mengukur penggunaan antibiotik dengan menggunakan *Defined Daily Dose* (DDD)/100 hari rawat agar

menghasilkan data standar yang dapat dibandingkan dengan data dari sumber lain (Permenkes, 2015).

Anatomical Therapeutic Chemical (ATC) adalah teknik untuk mengkategorikan obat berdasarkan organ atau sistem organ yang menghasilkan efek terapeutik, farmakologi, dan kimia. Secara berkala setiap tahun klasifikasi dan peraturan yang berkaitan dengan ATC diubah sesuai dengan pengetahuan dan kemajuan informasi baru tentang obat-obatan. Sistem ATC banyak digunakan secara internasional. Obat diklasifikasikan menjadi lima level yang berbeda, yakni (WHO, 2022):

a. Level kesatu, Level yang paling luas, obat dibagi menjadi 14 kelompok utama anatomi. Kode level pertama berdasarkan huruf, contoh: "J" untuk Antiinfectives for systemic use.

Tabel II. 1 Kelompok Utama Anatomis

Kode ATC	Makna
A	Alimentary tract and metabolism
В	Blood and blood forming organs
C	Cardiovascular system
D	Dermatologicals
G	Genito urinary system and sex hormones
Н	Systemic hormonal preparations, excl, sex hormones and insulines
J	Antiinfectives for systemic use
L	Antineoplastic and immunomodulating agents
M	Musculo-skeletal system
N	Nervous system
P	Antiparasitic products, insectides and repellents
R	Respiratory system
S	Sensory organs
V	Various

- b. Level kedua, subkelompok terapi/ farmakologis
- c. Level ketiga dan keempat adalah subkelompok kimia, farmakologis atau terapeutik
- d. level 5 adalah zat kimia.

Contoh: Kode untuk sefiksim adalah ATC J01DD08. Dengan makna sebagai berikut: Tabel II. 2 Kode Struktur ATC Cefixime

J	Antiinfeksi untuk sistemik (Level 1, kelompok utama anatomi)
J01	Antibakteri untuk penggunaan sistemik (Level 2, kelompok utama
	farmakologi)
J01D	Antibiotik Beta-Laktam, Lainnya (Level 3, subkelompok farmakologi)
J01DD	Sefalosporin generasi ketiga(Level 4, subkelompok kimia)
J01DD0	Cefixime (Level 5, zat kimia)
	(9 1 11110 200)

(Sumber: WHO, 2022)

II.3.2 Defined Daily Dose (DDD)

WHO mengembangkan metode *Defined Daily Dose* (DDD) yang ditetapkan untuk menentukan berapa banyak antibiotik yang digunakan di fasilitas medis. Jika digunakan di rumah sakit, perhitungan DDD dilakukan untuk setiap penggunaan selama 100 hari rawat atau 100 pasien. Dari hasil perhitungan dapat dibandingkan dengan tolok ukur DDD yang sudah ditetapkan oleh WHO. DDD diasumsikan sebagai dosis perawatan harian untuk orang dewasa untuk indikasi utama. Hanya obat dengan kode ATC yang memiliki nilai DDD. Manfaat unit ini adalah dapat mencerminkan dosis obat dalam skala dunia tanpa ada pengaruh oleh variasi genetik dari setiap etnis. Analisis kuantitas penggunaan obat membantu mengidentifikasi penggunaan yang berlebihan dan kurang dalam pengobatan (WHO, 2022).

II.3.4 Aplikasi ATC/DDD

Sistem ATC/DDD merupakan alat ukur untuk pemantauan dan riset penggunaan obat dalam rangka peningkatan kualitas penggunaan obat. Evaluasi penggunaan antibiotik secara retrospektif dapat dilakukan dengan menggunakan metode ATC/DDD (*Anatomical Therapeutic Chemical/Defined Daily Dose*). WHO menyarankan penggunaan *Anatomical Therapeutic Chemical* (ATC) *Classification* penggunaan antibiotik untuk mendapatkan data yang seragam dan memungkinkan perbandingan dengan data dari sumber lain. Unit ini memiliki manfaat untuk mencerminkan dosis obat secara menyeluruh tanpa dipengaruhi oleh variasi genetik dari kelompok etnis yang berbeda. Keuntungan dari teknik ATC/DDD adalah mudah dibandingkan dengan institusi baik di dalam negeri maupun di luar negeri. (WHO, 2015). Pada penelitian ini kode ATC/DDD antibiotik yang dapat diakses melalui https://www.whocc.no/atc ddd index/ (WHO 2022).

Berikut adalah rumus perhitungan konsumsi antibiotik dengan menggunakan DDD/100 hari rawat. Cara perhitungannya sebagai berikut:

- a. Data catatan rekam medis pasien rawat inap *obgyn* yang mendapatkan pengobatan antibiotik dikumpulkan.
- b. Data lama masa perawatan (LOS) pasien rawat inap *obgyn* yang mendapatkan antibiotik dikumpulkan.
- c. Jumlah antibiotik (dalam gram) yang digunakan selama di rumah sakit dihitung.
- d. Tentukan DDD/100 hari rawat

Berikut rumus perhitungan DDD/100 hari rawat:

DDD/100 hari rawat =
$$\frac{(jumlah\ gram\ antibiotik\ yang\ digunakan\ oleh\ pasien)}{Standar\ DDD\ WHO\ dalam\ gram} x = \frac{100}{Total\ LOS}$$

LOS (*length of stay*) merupakan total lama rawatan pasien, diukur dari hari mereka *check in* sampai hari mereka *check out*, yang ditentukan dari rekam medis yang dipilih sebagai sampel periode bulan Oktober hingga Desember 2022. Hasil dari perhitungan DDD/100 hari pasien dibandingkan dengan pedoman WHO. Penggunaan antibiotik dianggap kurang selektif jika nilai DDD yang didapatkan lebih tinggi dari nilai standar WHO. Jika antibiotik tidak digunakan secara selektif, dikhawatirkan akan terjadi penggunaan antibiotik yang tidak rasional. Ketepatan indikasi dan dosis merupakan parameter rasional yang dapat ditentukan dengan menggunakan nilai DDD. Ada kemungkinan antibiotik masih digunakan secara tidak tepat dan dosis besar mungkin telah diberikan jika hasil nilai DDD yang didapatkan lebih tinggi dari nilai standar DDD WHO.

II.4 Drug Utilization 90%

Klasifikasi obat yang merupakan bagian dari 90% obat yang sering digunakan dijelaskan menggunakan metode DU (*drug utilization*) 90%. Metode ini dapat digunakan apabila penggunaanya secara bersamaan dengan metode ATC/DDD. Profil DU 90% bertujuan untuk analisis kuantitatif trend penggunaan antibiotik yang termasuk dalam akumulasi 90% antibiotik tertinggi. Tolak ukur kualitas peresepan obat dapat ditetapkan dengan menggunakan hasil dari nilai DU 90% (Putri dkk, 2021). Obat-obatan yang masuk dalam DU 90% dalam hal ini dikelompokkan bersama untuk melihat segmen DU 90% dengan evaluasi, pengendalian, penggunaan, dan perencanaan pengadaan obat (Mahmudah dkk, 2016).

II.5 Rekam Medis Elektronik

Rekam medis adalah catatan yang meliputi informasi identitas pasien, catatan pengobatan, hasil pemeriksaan, tindakan, dan pelayanan lain yang telah diberikan kepada pasien, menurut Permenkes No. 24 Tahun 2022. Rekam medis elektronik adalah catatan yang dibuat dengan

sistem elektronik dan diarahkan untuk penyelenggara rekam medis. Setiap lembaga layanan kesehatan diharuskan oleh undang-undang untuk mengatur catatan medis elektronik.

Dokumen rekam medis sekurang-kurangnya harus memuat hal-hal sebagai berikut:

- a. Identifikasi pasien
- b. Hasil dari pemeriksaan fisik dan penunjang
- c. Pengobatan, diagnosis, dan rencana tindak lanjut; dan
- d. Nama dan tanda tangan tenaga kesehatan (Permenkes, 2022).