Bab II Tinjauan Pustaka

II.1 Kunyit Putih (Kaempferia rotunda L.)

Kunyit putih (*Kaempferia rotunda L.*) sudah dikenal luas oleh masyarakat Indonesia. Dalam farmakologi Cina dan pengobatan tradisional lain disebutkan bahwa tumbuhan ini memiliki sifat yaitu dapat menghentikan pendarahan, antinflamasi dan menambah nafsu makan. Tanaman ini bersifat antineoplastik (merusak pembentukan ribosom pada sel kanker atau menghambat pertumbuhan sel kanker), bagian yang sering digunakan adalah rimpang dan daun (Nasution, 2002). Tanaman ini sangat kaya akan kandungan kimia seperti kurkumin, alkaloid, gula, flavonoid sebagai antiinflamasi. Kunyit putih jenis temu mangga ini rimpangnya mampunyai bau khas seperti mangga kweni. Ciri-ciri dari tanaman kunyit putih ini adalah memiliki bintik umbi yang seperti umbi jahe dan memiliki warna krem agak kuning muda (Sastropradjo, 1990).

Manfaat kunyit putih menjadi salah satu tanaman obat tradisional yang digunakan banyak orang untuk mengatasi berbagai permasalahan kesehatan. Kunyit putih tidak seperti dengan kunyit kuning yang biasa ditemui, karena memang agak jarang tanaman ini dijadikan untuk bumbu memasak. Kunyit putih merupakan sejenis rimpang dengan bentuk rimpang bulat dan berwarna putih hampir seperti kencur. Manfaat kunyit putih menjadi salah satu tanaman obat tradisional yang digunakan banyak orang untuk mengatasi berbagai permasalahan kesehatan. Kunyit putih juga digunakan sebagai resep pengobatan tradisional untuk berbagai ramuan untuk

jamu. Rasa yang dihasilkan dari tanaman herbal seperti pada manfaat kencur ataupun manfaat temulawak ini sangat tidak enak, namun ternyata memiliki khasiat baik bagi tubuh yang tersimpan pada kandungannya (Sutarjadi, 1992). Kunyit putih termasuk tanaman musiman yang tumbuh berumpun. Susunan tumbuh tanaman kunyit putih terdiri atas akar, batang, daun dan rimpang (Warnaini, 2013).

Sistem perakaran kunyit putih termasuk akar serabut (radix adventicia) berbentuk benang (fibrosus) yang menempel pada rimpang. Panjang akar kurang lebih 22,50 cm dan berwarna coklat muda (Friendly, 2013). Tumbuh bercabang dengan tinggi 40-80 cm, batangnya merupakan batang semu, tegak, bulat dan terasa agak lunak. Batang tanaman ini relatif pendek membentuk batang semu dari pelepah-pelepah daun yang saling menutup satu sama lain (Fire. 2014). Daunnya tersusun atas pelepah daun dan helai daun. Rimpang-rimpang tumbuh dari umbi utama, umbi utama bentuknya bervariasi antara bulat panjang, pendek, lurus, tebal dan melengkung. Rimpang kunyit yang sudah besar dan tua merupakan bagian yang dominan sebagai obat yang mengandung berbagai senyawa diantaranya kurkumin, amilum, gula, minyak atsiri dan protein toksik yang dapat menghambat perkembang biakan sel kanker. Rimpang bercabang-cabang membentuk rumpun, berbentuk bulat seperti kacang tanah atau bisa juga berbentuk seperti telur merpati. Ketebalan rimpang muda sekitar 2 cm dan rimpang tua sekitar 4 cm, kulit rimpang tua berwarna jingga kecoklatan serta berdaging jingga terang agak kuning. Rasa rimpang sedikit berbau aromatik dan agak pahit (Friendly, 2013).

Gambar II. 1 Tanaman kunyit putih (Kaempferia rotunda L.)

(https://hellosehat.com/hidup-sehat/fakta-unik/manfaat-kesehatan-kunyit-putih/ diakses tanggal 15 November 2018)

Dalam taksonomi tumbuhan, kunyit putih dikelompokkan sebagai berikut (Dalimartha, 2008) :

Klasifikasi Kunyit Putih

Regnum: Plantae

Divisio : Spermatophyta

Classis : Monocotyledonae

Ordo : Zingiberales

Familia : Zingiberaceae

Genus : Kaempferia

Species : Kaempferia rotunda L.

Komponen yang terdapat dalam rimpang kunyit putih yaitu myrcene (81,4%), β -ocimene (5,1%), β -pinene (3,7%), α -pinene (2,9%), minyak atsiri (0,28%), dan kurkumin (3%). Selain itu rimpang dan daunnya mengandung alkaloid, flavonoid dan polifenol (Kardinan dan Taryono, 2003). Tanaman ini juga mengandung minyak esensial, pati, dan curcumin. Minyak esensial dari kunyit putih dipercaya

dapat mengurangi dampak dari radikal bebas tertentu. Sementara di India, tanaman ini sudah lama digunakan secara tradisional untuk pengobatan nyeri menstruasi, maag, muntah, dan. Kandungan minyak atsiri pada rimpang kunyit diantaranya yaitu *turmerone*, *curdione*, 1,8 cineole, β -pinene, P-cymene, Curlone, Turmeronol B, α -Zingiberene, β -bisaboleno, Curcumene (Sumber: Jayaprakasha dkk, 2005).

II.2 Adulteran

Deteksi pemalsuan makanan merupakan hal yang penting untuk perlindungan kesehatan konsumen (Pouli dkk., 2007). Pemalsuan obat berarti setiap bahan apapun yang membuat obat atau makan tidak aman atau tidak standar mengandung bahan asing dan atau dipengaruhi oleh penambahan zat yang berbahaya bagi kesehatan atau oleh pemindahan zat yang berkhasiat sehingga dapat diketahui bahwa tindakan tersebut secara tidak sengaja menurunkan kualitas dari produk tersebut (Food Safety and Standards Authority of India, 2012). Pemalsuan biasanya didorong oleh alasan ekonomi dengan tujuan untuk memperoleh keuntungan yang besar dengan cara mencampur bahan berharga tinggi dengan bahan yang bernilai rendah (Gallardo, 2009).

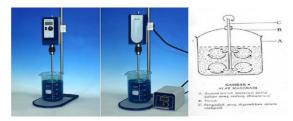
Pemalsuan pada bahan pangan khususnya jamu dapat merugikan konsumen maupun produsen. Harga kunyit putih yang jauh lebih tinggi dibandingkan dengan kunyit, sehingga banyak produsen nakal melakukan upaya yang secara sengaja dilakukan dengan cara mencampur, menambah atau mengganti bahan dengan tujuan meningkatkan bobot dan penampilan untuk memperoleh keuntungan

yang sebesar-besarnya. Salah satu alasan yang digunakan adalah untuk menambah bobot jamu kunyit putih yang dihasilkan. Pemalsuan makanan biasanya didorong oleh alasan ekonomi dengan tujuan untuk memperoleh keuntungan yang besar dengan cara mencampur bahan berharga tinggi dengan bahan yang bernilai rendah.

Adapun jenis-jenis pemalsuan yang dipalsukan dipasaran, antara lain (Food Safety and Standards Authory of India, 2012).

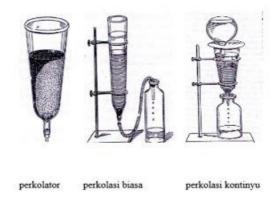
JenisZat yang ditambahkanPemalsuan yang disengajaPasir, batu, lumpur, kotoran lainnya.
Bedak, bubuk kapur, air, minyak,
mineral, dan warna berbahaya.Adulteran incidentalResidu peptisida, kotoran tikus, larva
dalam makanan.Kontaminan logamArsen dari peptisida, timbal dari air,
timah dari industri kimia.

Tabel II. 1 Jenis Adulteran


II.3 Ekstraksi

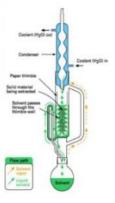
Ekstraksi merupakan proses pemisahan bahan dari campurannya dengan menggunakan pelarut yang sesuai. Proses ekstraksi dihentikan ketika tercapai kesetimbangan antara konsentrasi senyawa dalam pelarut dengan konsentrasi dalam sel tanaman. Setelah proses ekstraksi, pelarut dipisahakan dari sampel dengan penyaringan. Ekstrak merupakan sediaan pekat tumbuh-tumbuhan yang diperoleh dengan cara melepaskan zat aktif dan masing-masing bahan obat, menggunakan menstrum yang cocok, yang diuapkan semua atau

hampir semua dari pelarutnya dan sisa endapan atau serbuk diatur untuk ditetapkan standarnya (Ansel, 1989). Ekstrak awal sulit dipisahkan melalui teknik pemisahan tunggal untuk mengisolasi senyawa tunggal. Oleh karena itu, ekstrak awal perlu dipisahakan ke dalam fraksi yang memiliki polaritas dan ukuran molekul yang sama.


Jenis atau macam-macam ekstraksi diantaranya maserasi, perkolasi, soxhletasi, dan refluks.

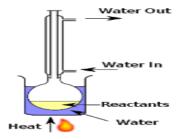
Maserasi yaitu penyarian zat aktif yang dilakukan dengan cara merendam serbuk simplisia dalam cairan penyari yang sesuai selama tiga hari pada temperatur kamar terlindung dari cahaya, cairan penyari akan masuk ke dalam sel melewati dinding sel. Isi sel akan larut karena adanya perbedaan konsentrasi antara larutan di dalam sel dengan di luar sel. Larutan yang konsentrasinya tinggi akan terdesak keluar dan diganti oleh cairan penyari dengan konsentrasi rendah (proses difusi). Peristiwa tersebut berulang sampai terjadi keseimbangan konsentrasi antara larutan di luar sel dan di dalam sel. Selama proses maserasi dilakukan pengadukan dan penggantian cairan penyari setiap hari. Endapan yang diperoleh dipisahkan dan filtratnya dipekatkan (Subhash, 2015).

Gambar II. 2 Metode Maserasi (http://fidzother.blogspot.com/2011/10/metode-extraksimaserasi.html / diakses 21 November 2018)


Perkolasi yaitu penyarian zat aktif yang dilakukan dengan cara serbuk simplisia dimaserasi selama 3 jam, kemudian simplisia dipindahkan ke dalam bejana silinder yang bagian bawahnya diberi sekat berpori, cairan penyari dialirkan dari atas ke bawah melalui simplisia tersebut, cairan penyari akan melarutkan zat aktif dalam sel-sel simplisia yang dilalui sampai keadan jenuh. Gerakan ke bawah disebabkan oleh karena gravitasi, kohesi, dan berat cairan di atas dikurangi gaya kapiler yang menahan gerakan ke bawah. Perkolat yang diperoleh dikumpulkan, lalu dipekatkan (Subhash, 2015).

Gambar II. 3 Metode Perkolasi (http://sehatwalafiatselalu.blogspot.com/2012/12/metodepenyarian.html / diakses 21 November 2018)

Soxhletasi yaitu penarikan komponen kimia yang dilakukan dengan cara serbuk simplisia ditempatkan dalam klonsong yang telah dilapisi kertas saring sedemikian rupa, cairan penyari dipanaskan dalam labu alas bulat sehingga menguap dan dikondensasikan oleh kondensor bola menjadi molekul-molekul cairan penyari yang jatuh


ke dalam klonsong menyari zat aktif di dalam simplisia dan jika cairan penyari telah mencapai permukaan sifon, seluruh cairan akan turun kembali ke labu alas bulat melalui pipa kapiler hingga terjadi sirkulasi. Ekstraksi sempurna ditandai bila cairan di sifon tidak berwarna, tidak tampak noda jika di KLT, atau sirkulasi telah mencapai 20-25 kali. Ekstrak yang diperoleh dikumpulkan dan dipekatkan (Subhash, 2015).

Gambar II. 4 Metode Soxhletasi (http://sehatwalafiatselalu.blogspot.com/2012/12/metodepenyarian.html / diakses 21 November 2018)

Refluks yaitu penarikan komponen kimia yang dilakukan dengan cara sampel dimasukkan ke dalam labu alas bulat bersama-sama dengan cairan penyari lalu dipanaskan, uap-uap cairan penyari terkondensasi pada kondensor bola menjadi molekul-molekul cairan penyari yang akan turun kembali menuju labu alas bulat, akan menyari kembali sampel yang berada pada labu alas bulat, demikian seterusnya berlangsung secara berkesinambungan sampai penyarian sempurna, penggantian pelarut dilakukan sebanyak 3 kali setiap 3-4

jam. Filtrat yang diperoleh dikumpulkan dan dipekatkan (Subhash, 2015).

Gambar II. 5 Metode Refluks
(http://sehatwalafiatselalu.blogspot.com/2012/12/metode-penyarian.html / diakses 21 November 2018)

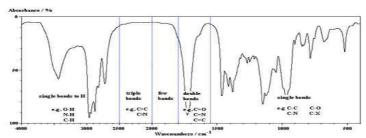
II.4 Fourier-Transporm Infrared Spectroscopy (FT-IR)

Fourier-Transporm Infrared Spectroscopy (FT-IR) mempunyai ketepatan yang tinggi pada aplikasi kimia organik dan anorganik. Spektrofotometri inframerah lebih banyak digunakan untuk identifikasi suatu senyawa melalui gugus fungsinya. Untuk keperluan elusidasi struktur, daerah dengan bilangan gelombang 1400 – 4000 cm⁻¹ yang berada dibagian kiri spektrum IR, merupakan daerah yang khusus berguna untuk identifikasi gugus-gugus fungsional, yang merupakan absorbsi dari vibrasi ulur. Selanjutnya daerah yang berada disebelah kanan bilangan gelombang 1400 cm ¹ sering kali sangat rumit karena pada daerah ini terjadi absorbsi dari vibrasi ulur dan vibrasi tekuk, namun setiap senyawa organik memiliki absorbsi yang kharakteristik pada daerah ini. Oleh karena itu bagian spektrum ini disebut daerah sidikjari (fingerprint region). Saat ini ada dua macam instrumen yaitu spektroskopi IR dan FTIR (Fourier Transformation Infra Red). FTIR lebih sensitif dan akurat misalkan dapat membedakan bentuk cis dan trans, ikatan rangkap terkonjugasi dan terisolasi dan lain-lain yang dalam spektrofotometer IR tidak dapat dibedakan (Stuart, 2004).

Gambar II. 6 Skema FT-IR

(https:/alphasains/posts/skema-alat-ftir-ft-ir-pada-alat-spektrometer-ftir-terdapat-beberapa-part-antara diakses 21 November 2018)

Pada instrumen analisis sampelnya meliputi:


- The source: energy IR yang dipancarkan dari sebuah benda hitam menyala. Balok ini melewati melalui logam yang mengontrol jumlah energi yang diberikan kepada sampel.
- Interferometer: sinar memasuki interferometer, spectraencoding "mengambil tempat, kemudian sinyal yang dihasilkan keluar dari interferogram.
- 3. *Sample*: sinar memasuki kompartemen sampel dimana diteruskan melalui cermin dari permukaan sampel yang tergantung pada jenis analisis.
- 4. Detector: sinar akhirnya lolos ke detektor untuk pengukuran akhir. Detektor digunakan khusus dirancang untuk mengukur sinar interferogram khusus. Detektor yang digunakan dalam Spektrofotometer Fourier Transform Infrared adalah Tetra Glycerine Sulphate (disingkat TGS) atau Mercury Cadmium Telluride (disingkat MCT). Detektor MCT lebih banyak

digunakan karena memiliki beberapa kelebihan dibandingkan detektor TGS, yaitu memberikan respon yang lebih baik pada frekuensi modulasi tinggi, lebih sensitive, lebih cepat,tidak dipengaruhi oleh temperatur, sangat selektif terhadap energy vibrasi yang diterima dari radiasi infra merah.

 Computer: sinyal diukur secara digital dan dikirim ke computer untuk diolah oleh Fourier Transformation berada. Spektrum disajikan untuk interpretasi lebih lanjut.

Berdasarkan pembagian daerah panjang gelombang, sinar inframerah dibagi atas tiga daerah yaitu:

- 1. Daerah inframerah dekat
- 2. Daerah inframerah pertengahan
- 3. Daerah inframerah jauh

Gambar II. 7 Daerah-daerah vibrasi dari masing-masing ikatan yang dimiliki oleh senyawa organik

(http://endiferrysblog.blogspot.com/2011/11/spektroskopi-ir-

dalam-penentuan.html/ diakses 6 Desember 2018)

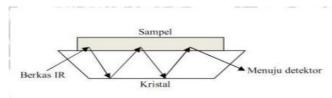
Cuplikan atau sampel yang dianalisis dapat berupa cairan, padatan atau pun gas. Karena energi vibrasi tidak terlalu besar sampel dapat diletakan langsung berhadapan dengan sumber radiasi IR. Karena gelas kuarsa atau mortar yang terbuat dari porselene dapat memberikan kontaminasi yang menyerap radiasi IR, maka

pemakaian alat tersebut harus dihindari. Preparasi cuplikan harus menggunakan mortar yang terbuat dari batu agate dan pengempaan dilakukan dengan menggunakan logam monel.

Detektor berfungsi mengubah sinyal radiasi IR menjadi sinyal listrik. Selain itu detektor dapat mendeteksi adanya perubahan panas yang terjadi karena adanya pergerakan molekul. Detektor spektrofotometer yang bersifat menggandakan elektron tidak dapat dipakai pada spektrofotometer IR sebab radiasi IR sangat lemah dan tidak dapat melepaskan elektron dari katoda yang ada pada sistem detektor (Gritter, 1991).

II.5 Analisis Komponen Utama

Spektum FTIR akan menampilkan keseluruhan informasi ikatan dalam suatu molekul yang terdiri atas gerak vibrasi dan rotasi. Hal tersebut membuat spektroskopi FTIR sangat berguna untuk analisis kualitatif seperti membedakan antar sampel akan tetapi interpretasinya dapat menjadi sulit dilakukan akibat adanya kemiripan dari setiap respon ikatan pada molekul yang ada dalam suatu sampel. Salah satu pengembangan yang menarik dari spektrofotometer FTIR adalah adanya teknik reflektan yang sederhana, yaitu sistem Attenuated Total Reflectance (ATR). ATR merupakan teknik yang baik dan tangguh untuk sampling IR. ATR berguna untuk sampling permukaan bahan yang halus, dimana bahan tersebut sangat tebal atau buram untuk pengukuran IR dengan transmisi. Teknik ATR bersifat nondekstruktif, preparasi sampel sedikit dan tidak memerlukan preparasi sampel, dan cepat. ATR dapat mengukur padatan (seperti kertas, kaca, keju, daging, serbuk


dan bahan yang warna gelap) dan cairan termasuk larutan nonaqueous (seperti minyak dan pasta), polimer dan bahan organik lain (Sun, 2008).

Pada penggunaan ATR, sampel akan bersentuhan dengan Kristal dengan indeks reflaksi yang tinggi. Kristal ATR dapat terbuat dari Zinc Selenide (ZnSe), Germanium (Ge) atau berlian dimana dapat mengabsorpsi energi pada tingkat yang rendah dan sebagian besar kristal tersebut memiliki batasan pH. Kontak antara sampel dan kristal ATR harus baik agar data yang dihasilkan bersifat akurat. Sistem ATR mengukur perubahan yang terjadi pada berkas IR yang direflaksikan secara keseluruhan saat berkas bersentuhan dengan sampel.

Radiasi berasal dari beam-splitter akan mengalami refleksi beberapa kali di dalam permukaan kristal. Berkas menembus fraksi panjang gelombang di luar permukaan yang terefleksi. Ketika sampel mengabsorpsi berkas secara selektif, berkas akan kehilanagn energi pada panjang gelombang tersebut. Berkas reflektan yang dihasilkan, diukur dan dibentuk sebagai fungsi panjang gelombang oleh spektrofotometer dan mempengaruhi ketinggian pada karakteristik spektrum absorbansi sampel (Stuart, 2004). Teknik penanganan sampel pada spektroskopi inframerah antara lain yakni transmitan dan pantulan. Mekanisme teknik transmitan adalah radiasi inframerah yang dilewatkan pada sampel kemudian mendeteksinya, namun teknik ini memiliki kekurangan karena dibatasi oleh ketebalan sampel yaitu yang sesuai adalah 1-20 µg dan preparasi sampel membutuhkan waktu yang lama. Teknik pantulan atau

reflactane ini sinar inframerah kembali dipantulkan pada sampel yang dianalisis. Keuntungan teknik ini adalah preparasi sampel cepat, mudah, tidak dipengaruhi oleh ketebalan sampel dan non-destruksi (Smith, 1996).

Berdasarkan tipe pantulan dari sampel, maka teknik penanganan sampel dibagi menjadi specular reflactane, diffused reflactane, dan Attenuated Total Reflactane (ATR). Teknik ATR merupakan teknik yang paling sering digunakan. Prinsip ATR yaitu dimana sampel diteteskan pada kristal ZnSe yang terdapat pada spektroskopi FTIR, sinar inframerah akan melewati medium dengan indeks bias yang tinggi ke medium indeks bias rendah yaitu dari kristal ZnSe menuju sampel. Sebagian sinar akan dipantulkan kembali ke sampel pada sudut tertentu sebagian besar gelombang sinar dipantulkankan kembali yang disebut dengan total internal reflection. Pada kondisi ini sebagian kecil energi akan terlepas dari kristal dan berpindah melewati bagian bawah kristal dalam bentuk gelombang. Dengan adanya pelepasan energi ini akan menyebabkan intensitas sinar yang dipantulkan menjadi bekurang disebut dengan kondisi ATR (Attenuated Total Reflactane).

Gambar II. 8 Prinsip ATR (http://repository.ump.ac.id/4701/3/BAB%20II.pdf/ diakses 18 Desember 2018)

II.6 Analisis PCA (Principal Component Analysis)

Metode ini dapat menganalisis data berupa hasil derivatisasi data spektrum. Selanjutnya data spektrum yang diperoleh akan diolah dan disederhanakan oleh *Principal Component analysis* (PCA). Metode kemometrik yang digunakan pada analisis ini adalah PCA (*Principal Component Analysis*). PCA merupakan interpretasi data yang dilakukan dengan preduksi data, dimana jumlah variable dalam suatu matriks dikurangi untuk menghasilkan variable baru dengan tetap mempertahankan informasi yang dimiliki oleh data. Variable baru yang dihasilkan berupa skor atau komponen utama (Rohman, 2012).

II.7 Validasi Metode PCA

Validasi metode yang digunakan dalam analisis kemometrik ini adalah Principal Component Analysis (PCA) sebuah teknik statistik yang digunakan untuk periksa keterkaitan antara seperangkat variabel secara berurutan untuk mengidentifikasi struktur dasar dari variabel-variabel tersebut juga disebut analisis faktor. Pada PCA ada dua komponen yaitu statistik dan Matriks Algebra (nilai eigen dan faktor eigen adalah matriks dasar dari PCA).

A. Statistik

Statistik meliputi data sebagai berikut:

- 1. Standar deviasi (SD)
- 2. Varians yaitu ukuran lain dari penyebaran data dalam kumpulan data sebenarnya hampir identik dengan standar deviasi.
- Kovarian adalah ukuran, kovariansi selalu di ukur antara 2 dimensi.
- 4. Kovarians matriks.

B. Matriks Algebra, bagian ini berfungsi untuk memberikan latar belakang aljabar matriks yang dibutuhkan di PCA (nilai eigen dan factor eigen).

1. Eigen factor

Eigen factor adalah komponen utama (dari komponen PCA-komponen prafipal) mencerminkan varians umum dan varians yang unik dan dapat dilihat sebagai pendekatan yang berfokus pada varian yang berusaha mereproduksi varians variabel total dengan semua komponen dan untuk mereproduksi korelas. PCA jauh lebih umum dari pada PFA, dan biasanya menggunakan "faktor" secara bergantian dengan "komponen". Komponen utama adalah kombinasi linier dari variabel asli yang dibobot oleh kontribusinya untuk menjelaskan varians dalam dimensi ortogonal tertentu.

2. Eigen Value

Eigen value disebut juga ciri khas akar, nilai eigen untuk faktor tertentu mengukur varians dalam semua variabel yang diketahui oleh faktor tersebut. Nilai eigen mengukur jumlah variasi dalam total sampel yang dicatat oleh masing-masing faktor. Nilai dasar eigen faktor dihitung sebagai jumlah pemuatan faktor kuadrat untuk semua variabel. Perhatikan bahwa nilai eigen yang terkait dengan solusi yang tidak dilepas dan diputar akan berbeda, meskipun jumlahnya akan sama (Smith, 2002).

Eigen factors dan Eigen values

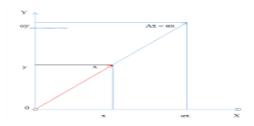
Misalkan C adalah matriks n×n dengan I sebagai matriks identitasnya. Nilai eigen dari C didefinisikan sebagai akar dari persamaan:

Determinan
$$(C - \alpha 1) = |(C - \alpha 1)| = 0$$
 (II.1)

Persamaan diatas disebut persamaan polinomial karakteristik C dan memiliki n akar. Terkait dengan masing-masing nilai eigen adalah seperangkat koordinat yang menentukan arah sumbu utama yang terkait. Ini disebut sebagai vektor eigen (x) dan dihitung sebagai:

$$Cx = \alpha x$$
 (II.2)

Jadi, besaran nilai eigen menggambarkan panjang dan vektor eigen menggambarkan arah sumbu utama (Gupta, dkk., 2013). Jika terdapat suatu matriks A berukuran $n \times n$ dan vector tak nol \times berukuran, x R^n , maka dapat dituliskan :


$$Ax_{\epsilon} = \alpha x_{\epsilon} \tag{II.3}$$

Keterangan

Ax: faktor berukuran n×n

 α : skalar riil yang memenuhi persamaan, disebut nilai eigen (karakteristik).

X: faktor eigen

Gambar II. 9 Nilai dan vektor eigen

(https://id.wikipedia.org/wiki/Nilai_dan_vektor_Eigen/ diakses 18 Desember 2018)